首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
针对批量液压马达试验中能量浪费的问题,提出了精确控制马达转速和马达加载的试验方法,设计了一种电功率回收液压马达出厂试验台,并对液压马达试验台电功率回收原理及功率回收效率进行分析。采用AMESim软件对系统功率回收效率仿真,且通过试验台对液压马达相关性能进行测试,对试验与仿真系统功率回收效率进行比较分析,发现在仿真和试验中系统功率回收效率存在最大值且与液压马达总效率正相关。试验台设计合理,可以较好的实现试验过程中多余能量回收,对液压马达试验台电功率回收的设计与研究具有参考价值和实际工程指导意义。  相似文献   

2.
针对用于测试油气悬挂减震器性能的试验平台匮乏的问题,设计了一种伺服油缸动态对顶加载的油气悬挂减震器性能试验台,其包括液压系统、测控系统、软件界面,可以实现试运转及静压试验、循环加载试验和泄漏试验等各项性能测试。通过实际试验结果表明:平台测试性能稳定,能有效体现出产品的各项性能。  相似文献   

3.
介绍了汽车制动能量回收原理,分析了超级电容在制动能量回收方面的优势,设计了汽车制动能量回收试验台架,提出了制动能量回收的控制算法,测试了转速稳定性、起动电流等关键参数,验证了台架的可靠性。研究结果表明,试验台架能够模拟汽车制动能量,利用超级电容储存制动能量并将储存的能量用于起动。通过控制模块实时控制,实现对制动能量有效的回收及利用。惯性模拟飞轮转速稳定,上下波动在50r/min以内,可准确的模拟设定动能;直接利用超级电容起动发动机是可行的,起动峰值电流在200A以内;设计的能量回收控制算法执行有效。  相似文献   

4.
在分析静动液辅助制动试验台结构与工作原理的基础上,确定了试验台关键元件的选型参数,并应用模块化设计思想开发了试验台测控软件.依托试验台进行了能量回收工况和能量再生工况的试验.试验结果表明,试验系统能够满足重型车辆静动液辅助制动模拟的需要,试验系统的能量回收效率和再生效率较高,具有一定的工程应用价值.  相似文献   

5.
针对某型大功率液压马达试验台加载系统的控制性能进行分析,完成马达试验台所需试验。采用变量泵对被试马达进行加载,在加载过程中通过改变泵的排量实现对加载转矩大小和方向的精确控制。根据马达试验台的实际工况,建立阀控非对称缸系统数学模型,并对建立的控制系统模型进行仿真分析。在控制系统中加入PID控制器来提升系统的动态响应特性,然后使用全局搜索能力较强的线性惯性权重(LDW)粒子群算法(PSO)对PID控制器进行优化,并通过仿真软件进行对比分析。研究结果表明:使用PSO算法优化的PID控制系统响应速度快、调整时间短、跟踪性能好,相比于原控制系统,采用PSO算法优化的PID控制器有效提高了系统的动态响应性能。  相似文献   

6.
为降低挖掘机能量的消耗,该文设计了一种以超级电容为储能元件的能量回收液压系统,为了回收的电能可以在挖掘机工作中直接进行再利用,为此将以前挖掘机的内燃机驱动变为发动机驱动.通过建立超级电容数学模型,结合该系统设置超级电容主要参数,同时结合AMESim与MATLAB进行联合仿真.仿真结果表明,能量回收系统在满足传统液压系统...  相似文献   

7.
液压机的特点是滑块质量大,工进负载力大,其滑块空程下放造成了重力势能、动能等能量的浪费。为了回收利用这部分能量并且降低电机转矩,基于“伺服电机+定量泵”的闭式泵控方案,提出了带超级电容储能系统的双排量泵/马达闭式驱动液压机方案,并制定能量管理策略对能量进行回收与再利用。搭建了液压机试验台,试验结果表明,储能系统的能量回收效率为79.3%;进一步开展仿真研究,基于SimulationX多学科仿真软件,构建了液压机的多学科仿真模型,仿真结果表明,双排量泵能大幅度降低电机转矩,储能系统能够减少液压机整机6.9%的能耗。  相似文献   

8.
带有功率回收系统的液压马达试验台能在试验过程中回收部分被试马达的输出功率,在很大程度上减少电能消耗,降低试验成本。介绍一种适用于多种规格系列马达的性能试验台,分析了其功率回收系统的计算方法,为系统中元件和设备的选择提供参考。  相似文献   

9.
结合垂直载荷下导轨副静刚度理论分析和测试方法,设计了一种基于液压加载的滚动直线导轨副静刚度试验台。该试验台完成对导轨副静刚度性能指标测试。试验台的液压加载系统加载过程平稳,试验台整体结构刚度高。测量结果可靠,重复性高,为以后高刚度导轨副的设计制造提供试验依据。  相似文献   

10.
为了对挖掘机的回转制动能进行回收,采用了一种由回转马达、回收马达、电机和超级电容组成的回转动能回收系统;对回收系统的主要元件进行了数学建模,并在此基础上搭建了基于AMESim的回收系统仿真平台;通过仿真试验,分别分析了不同电机力矩和不同回收马达排量对系统性能的影响,为回转能量回收系统的设计、调试及性能优化提供了依据。  相似文献   

11.
液压挖掘机作业中,大质量动臂举升储存的势能经液压阀口节流转化为热能耗散,不仅浪费能源,还使液压油温度升高,需附加冷却系统降温,增加了机器的成本和复杂性。为解决上述问题,在原有负载敏感驱动回路的基础上,提出基于三腔液压缸的工作装置自重液气平衡势能回收利用方法,三腔液压缸中一个油腔与液压蓄能器直接连通,存储利用工作装置的势能。研究中,首先根据前期的仿真结果,建立了基于三腔液压缸的液压挖掘机测试样机,通过试验,分析对比了分别采用两腔液压缸和三腔液压缸驱动动臂的运行特性与能效特性,测试结果表明,增加液气储能容腔后,提高了系统运行的平稳性,动臂运行过程中的能耗降低48.5%,峰值功率降低64.7%,节能效果显著。新的方法也同样适用于各类液压缸驱动的重载举升装置。  相似文献   

12.
针对可靠性高、寿命长的液压泵(马达)在可靠性试验中功率消耗大的问题,设计了一种基于电功率回收方式的液压泵(马达)可靠性试验台,利用AMESim软件对关键元件及系统进行了建模仿真。通过与样本曲线进行对比,验证了仿真模型的准确性和系统原理的正确性。基于不同工况下试验系统的加载控制方式,研究系统的功率回收特性。仿真结果表明,该试验台功率回收率最大能达到43%,对开发功率回收型液压可靠性试验台具有指导意义。  相似文献   

13.
多级液压缸同步控制精度研究   总被引:1,自引:0,他引:1  
文章的主要研究对象是液压支架试验台调高控制系统。通过对升降液压系统的分析,找出影响同步性能的因素,进而对系统的同步性能进行研究。多级液压缸同步起竖系统受力复杂,利用AMESim软件构建了二级液压缸4缸同步控制系统模型,并对其液压系统的性能进行分析。采用AMESim与simulink联合仿真的方法,对PID控制、模糊控制在多级液压缸同步控制中的应用进行了研究,经分析最后使用模糊-PID控制算法的方法。仿真结果表明,该控制算法能较好地满足升降系统对同步精度与稳定性的要求。  相似文献   

14.
王永进  权龙  杨敬 《机械工程学报》2014,50(20):180-187
在设计目前国内斗容和机重最大的矿用液压挖掘机液压控制系统中,为减小使用成本,采用交流电动机驱动变量液压泵组作为动力源。为满足工作效率要求,斗杆举升过程采用四台液压泵供油,通过四组比例多路阀(主控阀)阀外合流来满足斗杆的速度要求,为降低能耗,提出在斗杆下降过程依靠自重和专用的比例节流阀进行流量再生的控制方法,加快斗杆下降速度,提高系统工作效率。分析斗杆采用流量再生方法下降的前提条件,对斗杆液压缸在一个工作循环内的压力变化进行机电液一体化的联合仿真研究,按照仿真确定的参数设计并制造样机,试验测试表明,挖掘机加载最大试验负载25 kN时,所设计的液压控制系统可以满足斗杆满载举升所需要的压力及速度要求,斗杆下降采用流量再生方法后,下降时间由32 s缩短至18 s,下降速度明显加快,且下降结束阶段无液压冲击。通过试验,验证了挖掘机液压控制方案的正确性,为今后国内设计和制造更大型的液压挖掘机积累了数据和经验。  相似文献   

15.
在介绍油气悬挂动力缸密封结构的基础上,通过对油气悬挂台架试验数据比对以及后续密封件各级分解研究,采用力学建模的分析手段,获得了油气悬挂动力缸泄漏的主要原因并优化改进了密封结构,彻底解决了动力缸泄漏的故障。结果表明,不仅降低了制造成本,产品的性能也有了大幅的提高。  相似文献   

16.
提出一种起重机回转制动的能量回收系统,该系统由液压回路和控制回路组成,采用多种液压阀体组成的液压调节器,回收回转马达制动时的能量,并以液压能的形式储存在蓄能器中。当蓄能器释放能量时,蓄能器中液压油驱动变量马达和电动机经过分动箱的动力分配后带动主泵对工作负载做功,并且流经变量马达的液压油可进入其他执行机构,实现了液压油流量的再生,减少了能量回收转换环节,提高了能量回收效率,高效地运转了发动机,降低了油耗。  相似文献   

17.
设计了一种多功能液压试验台,介绍了其工作原理、系统组成及主要技术参数。结合企业产品设计研发需要,试验台能满足液压阀、液压缸等多项测试。通过对试验台数据测试和数据采集系统的集成设计,设计开发了适合该试验台的数据分析软件。  相似文献   

18.
合理配置系统各主要参数,是影响混合动力车辆制动性能及节能效果的关键问题。以轮边驱动液压混合动力车辆为原型,分析了轮边驱动液压混合动力车辆能量回收系统的工作原理,以原型车的1/4为基础,对辅助动力元件(蓄能器)、二次元件(液压泵/马达)的参数进行了理论分析;建立了能量回收系统的AMESim仿真模型,进行仿真分析;搭建了试验台架,开展试验验证。结果表明:在满足制动性能要求的前提下,增大蓄能器容积以及降低蓄能器最小工作压力有利于回收制动能量;二次元件的排量对制动性能的影响比较大,对制动能量的回收率影响很小;蓄能器工作压力越低,能量密度越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号