首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on characterization of a set of AlGaN/GaN multiple-quantum-well (MQW) photodetectors. The model structure used in the calculation is the p-i-n heterojunction with 20 AlGaN/GaN MQW structures in i-region. The MQW structures have 2 nm GaN quantum well width and 15 nm AlxGa1−xN barrier width. The cutoff wavelength of the MQW photodetectors can be tuned by adjusting the well width and barrier height. Including the polarization field effects, on increasing Al mole fraction, the transition energy decreases, the total noise increases, and the responsivity has a red shift, and so the detectivity decreases and has a red shift.  相似文献   

2.
The compositional changes of InxGa1−xP graded buffer inserted between GaP substrate and subsequently grown In0.36Ga0.64P homojunction LED structure were investigated by Raman spectroscopy. The indium content of InxGa1−xP interlayers was increased in eight steps with thickness of 300 nm and constant compositional change ΔxIn between the steps. The properties of InxGa1−xP graded buffer along the structure cross-section have been studied by Raman back scattering method and the changes in GaP LO and TO phonons were investigated. Raman shift of 13 cm−1 in GaP-like LO1 phonon was measured on beveled [100]surface for compositional change of InxGa1−xP layer in the range of 0<xIn<0.32. The measurements on the cleaved edge of the sample in [011] direction revealed a strong TO phonon at 366 cm−1 and weak LO phonon peak at 405 cm−1 in GaP substrate. By reaching the graded InxGa1−xP region the intensity of TO phonon decreases and appearance of considerable TO1 phonon shift up to 350 cm−1 for In content xIn=0.16 was observed. For upper graded layers with xIn from 0.16 to 0.24 the position of GaP-like TO1 was constant and can be ascribed to relaxation of lattice mismatched thin InxGa1−xP graded upper layers in the structure.  相似文献   

3.
《Microelectronics Journal》2007,38(4-5):505-508
In this paper, the effective refractive index of a GaN/In0.38Ga0.62N optical step index optical guiding structure has been investigated. The used method permits to approximate a three-dimensional optical waveguide to an equivalent waveguide where the index profile to be determined will only depend on y and z co-ordinates.The III-nitrides semiconductor devices have not been used or even investigated in the integrated optics field in order to design optical waveguides. It has been found that there exists a very good optical confinement in this device, where the In0.38Ga0.62N is lattice matched to the GaN.  相似文献   

4.
This paper gives the composition dependence of the bandgap energy for highly doped n-type AlxGa1−xN. We report results of the bowing parameter obtained using a random simulation. Three groups of AlxGa1−xN semiconductors were considered and which are distinguishable by their non degenerate or degenerate character in the doping density (1017?ND?1020 cm−3). A striking feature is the large discrepancy of the bandgap bowing (−2.02?b?2.94 eV), as was demonstrated from our calculations. This suggests that high doping may be a possible cause able to induce the large range of bowing parameters reported for AlxGa1−xN alloys.  相似文献   

5.
Nucleation kinetics during the growth of InxGa1−xN on a GaN substrate have been studied. The behavior of nonequilibrium between the InxGa1−xN and the GaN substrate has been analyzed, and hence, the expression derived for the stress-induced supercooling/superheating has been numerically evaluated. The maximum amount of stress-induced supercooling is found to be 1.017 K at x=0.12. These values are incorporated in the classical heterogeneous nucleation theory. Using the regular solution model, the interfacial tension between the nucleus and substrate and, hence, the interfacial tension between nucleus and mother phase and thermodynamical potential of the compounds have been calculated. The amount of driving force available for the nucleation has been determined for different compositions and degrees of supercooling. It has been shown that the value of the interaction parameter of InN-GaN plays a dominant role in nucleation and growth kinetics of InxGa1−xN on a GaN substrate. These values have been used to evaluate the nucleation parameters. It is shown that the nucleation barrier for the formation of a InxGa1−xN nucleus on a GaN substrate is minimum in the range of x=0.12 to x=0.17, and it has been qualitatively proved that good quality InxGa1−xN on GaN can be grown only in the range 0<x≤0.2.  相似文献   

6.
A Full-Potential Linearized Augmented Plane Wave calculation within density functional theory is performed to investigate the electronic and optical properties of cubic BxInyGa1−xyN alloys matched to GaN with low-Boron content (x≤0.187). The exchange-correlation potential is treated by the local density approximation (LDA) to calculate the structural properties. The band structure and density of states of these compounds are well predicted by modified Becke–Johnson (mBJ) exchange potential compared to LDA and generalized gradient approximation (GGA). Also, the optical properties are calculated by the mBJ exchange potential. The computed structural parameters are found to be in good agreement with experimental and theoretical data. The BxInyGa1−xyN alloy is expected to be lattice matched to GaN substrate for (x=0.125, y=0.187). The incorporation of B and In into GaN substrate allows the reduction of the band gap energy. The real and imaginary parts of the dielectric function, refractive index, reflectivity and absorption coefficient are discussed on the basis on the energy band structure and the calculated density of states. The optical properties of BxInyGa1−xyN depend on the incorporated Boron content (with y=0.187). This means that BxInyGa1−xyN could constitute an active layer in single quantum well for the design of high-efficiency solar cells and optoelectronic devices as Laser Diodes operating in the UV spectral region.  相似文献   

7.
High-resolution X-ray diffraction analysis and scanning confocal Raman spectroscopy are used to study the spatial distribution of strains in the In x Ga1 − x N/GaN layers and structural quality of these layers in a multilayered light-emitting diode structure produced by metal-organic chemical vapor deposition onto (0001)-oriented sapphire substrates. It is shown that elastic strains almost completely relax at the heterointerface between the thick GaN buffer layer and In x Ga1 − x N/GaN buffer superlattice. It is established that the GaN layers in the superlattice are in a stretched state, whereas the alloy layers are in a compressed state. In magnitude, the stretching strains in the GaN layers are lower than the compressive strains in the InGaN layers. It is shown that, as compared to the buffer layers, the layers of the superlattice contain a smaller number of dislocations and the distribution of dislocations is more randomly disordered. In micro-Raman studies on scanning through the thickness of the multilayered structure, direct evidence is obtained for the asymmetric gradient distributions of strains and crystal imperfections of the epitaxial nitride layers along the direction of growth. It is shown that the emission intensity of the In x Ga1 − x N quantum well is considerably (more than 30 times) higher than the emission intensity of the GaN barrier layers, suggesting the high efficiency of trapping of charge carriers by the quantum well.  相似文献   

8.
The thermodynamics as well as the energetics and the structural properties of cubic group-III nitrides alloys have been investigated by combining first-principles total energy calculations and cluster expansion methods. In particular results are shown for the ternary InxGa1−xN and the quaternary AlxGayIn1−xyN alloys. Phase separation is predicted to occur at growth temperatures, for both fully relaxed alloys. A remarkable influence of an external biaxial strain on the phase separation, with the formation of ordered phase structures has been found for the InGaN alloy. These findings are used to clarify the origin of the light emission process in InGaN-based optoelectronic devices. Results are shown for the composition dependence of the lattice constant and of the energy gap in quaternary AlxGayIn1−xyN alloys.  相似文献   

9.
High-resolution X-ray diffraction (HR-XRD) with rocking curve, atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy have been performed on high-quality quaternary AlxInyGa1−xyN thin films at room temperature. The AlxInyGa1−xyN films were grown on c-plane (0 0 0 1) sapphire substrates with AlN as buffer layers using a molecular beam epitaxy (MBE) technique with aluminum (Al) mole fractions x ranging from 0.0 to 0.2 and constant indium (In) mole fraction y=0.1. HR-XRD measurements confirmed the high crystalline quality of these alloys without any phase separation. The X-ray rocking curve of AlxInyGa1−xyN films typically shows full widths at half maximum (FWHM) intensity between 14.4 and 28.8 arcmin. AFM measurements revealed a two-dimensional (2D) growth mode with a smooth surface morphology of quaternary epilayers. PL spectra exhibited both an enhancement of the integrated intensity and an increasing blueshift with increased Al content with reference to the ternary sample In0.1Ga0.90N. Both effects arise from Al-enhanced exciton localization. PL was used to determine the behavior of the energy band gap of the quaternary films, which was found to increase with increasing Al composition from 0.05 to 0.2. This trend is expected since the incorporation of Al increases the energy band gap of ternary In0.1Ga0.90N (3.004 eV). We have also investigated the bowing parameter for the variation of energy band gaps and found it to be very sensitive on the Al composition. A value of b=10.4 has been obtained for our quaternary AlxInyGa1−xyN alloys.  相似文献   

10.
We theoretically calculate the composition dependence of the valence- and conduction- band discontinuities at the interfaces between selected III-nitride ternary materials with wurtzite structure, e.g. AlxGa1−xN/AlxGa1−xN, InxGa1−xN/InxGa1−xN and InxA1−xN/InxA1−xN. Calculations are performed using a theoretical model, initially proposed by Chuang et al. 1997 [1]. Depending on a particular set of input parameters, simulation results show that band offsets change more or less with strain. The valence band offsets, together with the resulting conduction band offsets, indicate that a type-I, type-II band line-up forms at InxGa1−xN/GaN, AlxGa1−xN/GaN heterojunctions with varying In, Al contents respectively. Also, based upon the same model, we propose a type I Indium-dependent band alignment in InxAl1−xN/AlN interfaces. The failure of the transitivity rule, which is often used to determine the band offsets in heterojunctions, was demonstrated and its cause was explained. The obtained results are well compared with experiment and theory in various reliable test cases and therefore provide a basis for optimization and design of novel interface structures.  相似文献   

11.
InXGa1−XSb has the highest hole mobility amongst all III-V semiconductors which can be enhanced further with the use of strain. The use of confinement and strain in InXGa1−XSb quantum wells lifts the degeneracy between the light and heavy hole bands which leads to reduction in the hole effective mass in the lowest occupied band and an increase in the mobility. We present magnetotransport measurements on compressively strained InXGa1−XSb and GaSb quantum wells. Hall-bar and Van de Pauw structures were fabricated and Shubnikov-de Haas oscillations in the temperature range of T = 2-10 K for magnetic fields of B = 0-9 T were measured. The reduction of effective hole mass with strain was quantified. These results are in excellent agreement with modeling results from band structure calculations of the effective hole mass in the presence of strain and confinement.  相似文献   

12.
An accurate charge control model to investigate the effect of aluminum composition, strain relaxation, thickness and doping of the AlmGa1−mN barrier layer on the piezoelectric and spontaneous polarization induced 2-DEG sheet charge density, threshold voltage and output characteristics of partially relaxed AlmGa1−mN/GaN HEMTs is proposed. The strain relaxation of the barrier imposes an upper limit on the maximum 2-DEG density achievable in high Al content structures and is critical in determining the performance of lattice mismatched AlmGa1−mN/GaN HEMTs. The model incorporates the effects of field dependent mobility, parasitic source/drain resistance and velocity saturation to evaluate the output characteristics of AlmGa1−mN/GaN HEMTs. Close proximity with published results confirms the validity of the proposed model.  相似文献   

13.
We have studied the influence of indium (In) composition on the structural and optical properties of Inx Ga1−xN/GaN multiple quantum wells (MQWs) with In compositions of more than 25% by means of high-resolution x-ray diffraction (HRXRD), photoluminescence (PL), and transmission electron microscopy (TEM). With increasing the In composition, structural quality deterioration is observed from the broadening of the full width athalf maximum of the HRXRD superlattice peak, the broad multiple emission peaks oflow temperature PL, and the increase of defect density in GaN capping layers and InGaN/GaN MQWs. V-defects, dislocations, and two types of tetragonal shape defects are observed within the MQW with 33% In composition by high resolution TEM. In addition, we found that V-defects result in different growth rates of the GaN barriers according to the degree of the bending of InGaN well layers, which changes the period thickness of the superlattice and might be the source of the multiple emission peaks observed in the InxGa1−xN/GaN MQWs with high in compositions.  相似文献   

14.
The band structure of cubic Group-III nitride ternary compounds In x Ga1 ? x N (x = 0.25, 0.5, and 0.75) is calculated within the context of density functional theory in the pseudopotential approximation. It is for the first time established that, in In x Ga1 ? x N cubic systems, the effect of charge transfer from metal atoms to nitrogen atoms per In-N bond is 20–30% more profound than the corresponding effect per Ga-N bond. This effect is a consequence of the difference between In and Ga in electronegativity as well as of the structural relaxation of bond lengths. It is for the first time shown that, in In x Ga1 ? x N systems, there exist both light and heavy holes, with the corresponding effective masses [(0.04–0.12)m 0] and [(0.72–0.97)m 0], and the electron effective masses are in the range (0.04–0.13)m 0 (m 0 is the free electron mass). It is shown that, in a In x Ga1 ? x N system with a high In content, the charge-carrier mobility is an order of magnitude higher than that in the GaN binary crystal.  相似文献   

15.
For the transition between valence band and conduction band, the third-order nonlinear optical susceptibility χ(3) for degenerated four-wave mixing in InxGa1−xN/GaN multiple quantum wells (MQWs) has been calculated. The contributions of spin-orbit split-off energy to the resonant third-order nonlinear optical susceptibility of the modes, whose polarization is vertical to the [0 0 1] direction of the MQWs, are discussed in detail. The correlations between the peaks of χ(3), which are due to the transitions from the spin-orbit split-off energy level to first conduction subband, and the width of the quantum well and the constituents of the semiconductor material are obtained.  相似文献   

16.
The investigation of the lattice dynamics of (AlxGa1−x)yIn1−yP quaternary semiconductor alloys lattice matched to GaAs has been made by Raman scattering. The Raman spectra exhibit three-mode behavior depending on the composition. A modified random element isodisplacement (MREI) model is generalized to the III-V (AxB1−x)1−yCyD-type quaternary alloys, describing the behavior of the optical phonons. The calculated result of two quaternary mixed crystals, (AlxGa1−x)yIn1−yP and (AlxGa1−x)yIn1−yAs, is in good agreement to the experimental data.  相似文献   

17.
The amphoteric properties of Ge in the InxGa1?xAscrystals grown by liquid-phase epitaxy are reported. It was found from the Hall measurements that when x < 0·1, the Ge-doped InxGa1?xAs was p-type, and when x > 0.1,it was n-type . At the vicinity of x = 0.1, therefore, the InxGa1?xAs p?n junction could be made by one growth process. The electrical and photoelectric characteristics of that junction were investigated. The distribution of Ge concentration at the p?n junction, which was obtained from the C-V characteristics, depended on the doping concentrations of Ge. This dependence can be interpreted by analyzing a modified Longini-Green equation. The spectral responses of both photovoltaic effect and electroluminescence showed that in In0.1Ga0.9As, Ge atoms gave rise to a heavy compensation effect, and introduced a conduction band tail of states and two kinds of acceptor levels located ~ 20and~ 100meV above the valence band edge.  相似文献   

18.
We have developed a technology for producing n-type GaxIn1−x N/p-Si heterostructures by combined pyrolysis of indium and gallium monoammoniate chlorides, making it possible to obtain heterolayers with composition varying over wide limits (from GaN up to InN). The composition and basic electric and optical characteristics of nitride films were determined. The electric and photoelectric properties of the heterostructures with GaxIn1−x N films of different composition were investigated. It was shown that the anisotypic heterojunction n-GaxIn1−x N/p-Si is a promising photosensitive element for detecting visible-range radiation. The maximum values of the specific detectivity were D*=1.2×1011 Hz1/2·W−1 at 290 K. A band diagram of the heterojunction was constructed. Fiz. Tekh. Poluprovodn. 32, 461–465 (April 1998)  相似文献   

19.
In this work, we focus on the fabrication of cubic GaN based Schottky-barrier devices (SBDs) and measured current voltage (I-V) characteristics and the critical field for electronic breakdown. Phase-pure cubic GaN and c-AlxGa1 − xN/GaN structures were grown by plasma assisted molecular beam epitaxy (MBE) on 200 μm thick free-standing 3C-SiC (1 0 0) substrates, which were produced by HOYA Advanced Semiconductor Technologies Co., Ltd. The thickness of the c-GaN and c-Al0.3Ga0.7N epilayers were about 600 and 30 nm, respectively. Ni/In Schottky contacts 300 μm in diameter were produced on c-GaN and c-Al0.3Ga0.7N/GaN structures by thermal evaporation using contact lithography. A clear rectifying behavior was measured in our SBDs and the I-V behavior was analyzed in detail, indicating the formation of a thin surface barrier at the Ni-GaN interface. Annealing of the Ni Schottky contacts in air at 200 °C reduces the leakage current by three orders of magnitude. The doping density dependence of breakdown voltages derived from the reverse breakdown voltage characteristics of c-GaN SBDs is investigated. The experimental values of breakdown voltage in c-GaN are in good agreement with theoretical values and show the same dependence on doping level as in hexagonal GaN. From our experimental data, we extrapolate a blocking voltage of 600 V in c-GaN films with a doping level ND = 5 × 1015 cm−3.  相似文献   

20.
Characterizations on the pseudomorphic High Electron Mobility Transistor structure under High-Resolution X-ray Diffraction (HRXRD) have been carried out at room temperature. Variation of Al contents in AlxGa1−xAs alloys has been found to show a shift of diffraction peaks. This variation is also found to show the change of lattice constant of crystal and also sheet carrier concentration as obtained from a Hall effect measurement. The latter phenomenon is considerably interesting to study in the early stage of the electrical properties of device based on the crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号