共查询到17条相似文献,搜索用时 62 毫秒
1.
使用盐酸-氢氟酸并采用微波消解处理炉渣样品,选择B 182.577nm或B 249.678nm为分析线,在基体没有明显干扰的情况下,选择自动匹配法(FITTED)进行谱线校正并扣除相应背景,采用高纯物质进行基体匹配后,配制标准溶液系列,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定炉渣系列样品中硼元素含量的方法。硼的质量分数为0.0006%~0.25%(B 182.577nm)或0.0008%~0.25%(B 249.678nm)范围内校准曲线呈线性,线性相关系数r均不小于0.9998;方法中硼的检出限小于0.0002%。方法应用于炉渣样品中硼的测定,结果的相对标准偏差(RSD,n=6)小于3%,加标回收率为96%~102%,与电感耦合等离子体质谱法(ICP-MS)进行比较,测定结果较为满意。 相似文献
2.
镍基合金耐蚀性优良,但难以溶解。实验使用盐酸-硝酸-氢氟酸并采用微波消解法消解样品,选择Si 288.158 nm、Cr 267.716 nm、B 249.678 nm为分析谱线,选用基体匹配法消除基体效应的影响,采用自动匹配法校正谱线干扰,并稀释溶液从而扩大铬元素的测定范围,建立了微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基合金中硅、铬、硼的方法。硅在0.1%~2.0%(质量分数,下同)、铬在0.1%~2.0%、硼在0.01%~0.1%范围内,各元素发射强度与其质量分数呈线性关系,校准曲线的线性相关系数均不小于0.999 4,各元素检出限不大于0.000 2%。按照实验方法测定镍基合金样品中硅、铬、硼,结果的相对标准偏差(RSD,n=6)为0.70%~1.8%。方法应用于镍基合金标准样品的测定,测定结果与认定值相符。 相似文献
3.
准确测定铁矿石中硫化铁对于铁矿石的物相分析具有重要意义。目前,铁矿石中硫化铁的前处理方法以系统分析法为主,虽然该方法发展较为成熟,但是存在着步骤繁琐、分离不彻底、硫化铁易损失等问题,易导致测定结果不准确。通过不同溶样方法的对比试验,确定了采用饱和溴水-高锰酸钾混合溶液直接浸取铁矿石的方法以充分浸取硫化铁;通过不同定容方式的对比试验,选择氟化铵-盐酸混合溶液作为提取介质,以最大程度抑制铁的水解,经电感耦合等离子体原子发射光谱法(ICP-AES)测定,得到铁矿石中硫化铁(以铁计,下同)的含量。方法中校准曲线的线性相关系数为0.999 9;硫化铁的检出限为3μg/g。按照实验方法测定铁矿石物相成分分析标准物质中硫化铁,结果的相对标准偏差(RSD,n=8)为1.9%~3.5%,相对误差为1.3%~2.5%。实验方法用于测定3个铁矿石实际样品中硫化铁,结果的RSD(n=5)为0.68%~3.0%。方法适用于铁矿石中0.04%~8%(质量分数)硫化铁的测定。 相似文献
4.
采用微波消解样品,建立了一种快速测定钒钛烧结矿中钒、钛、铝、镁、锰、钾、钠、铅、锌9种元素的电感耦合等离子体原子发射光谱法(ICP-AES)。试样被王水消解后在选定分析谱线的波长下测定,基体和共存元素对测定元素没有光谱干扰,基体效应用基体匹配法消除。钒、钛、铝、镁的质量分数在0.01%~3.00%范围内,锰、钾、钠、铅、锌的质量分数在0.001%~0.35%范围内,校准曲线呈线性,线性相关系数(r)均大于0.999。方法应用于钒钛烧结矿标准样品的测定,上述元素测定值与认定值相符。对一钒钛样品中铝、钒、钛、锰、镁、锌、钾、钠和铅分别测量10次,测定结果的相对标准偏差(RSD,n=10)均小于5%,方法可以应用于生产检验中。 相似文献
5.
提出了一种快速测定钛合金中B的电感耦合等离子体原子发射光谱(ICP-AES)法,优化了仪器参数,确定了最佳的分析条件。试样经硫酸和硝酸溶解后,选择B 208.957光谱线作为硼的分析线,试液直接用ICP-AES法测定,基体和共存元素产生的光谱干扰采用基体匹配和对背景发射位以2点校正的方法进行消除,硼的检出限为0.000 72μg/mL。对一钛合金样品进行10次测定,相对标准偏差小于1%,加标回收率在97%~130%之间,本法的分析结果与分光光度法一致。 相似文献
6.
试样以王水和氢氟酸为消解试剂,经微波消解,采用电感耦合等离子体原子发射光谱法测定铑炭催化剂中的铑。试样在185℃的密闭容器中经60 min可以溶解完全;消解液成分的干扰可以通过选择合适的分析谱线消除;加标回收率98.20%~107.0%,相对标准偏差小于4.0%(n=9),方法检出限为0.012μg/mL,可满足铑炭催化剂中0.2%~7%铑含量的测定要求。 相似文献
7.
硼钛复合材料中硼含量多少关系到增强相(BTi)占比,直接影响硼钛复合材料各项机械性能。故硼测定结果对硼钛复合材料研究有重要意义。实验提出采用硫酸(1+1)分解样品,选择B 208.890nm作为分析线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定硼钛复合材料中硼。通过条件试验优化仪器的工作条件为发生器功率1.2kW和雾化气压力0.23MPa。硼质量浓度在5.00~50.0μg/mL范围内与其发射强度呈线性关系,线性相关系数大于0.999;方法检出限为0.00045%,测定下限为0.0015%。按照实验方法分别测定5种硼钛复合材料中硼,其结果的相对标准偏差(RSD,n=11)为0.44%~0.68%,加标回收率为94%~103%。 相似文献
8.
采用高压密闭微波加热方式,以硝酸和盐酸混合酸(VHNO3:VHCL=1:2)消解样品,建立了微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定五氧化二钒中质量分数为0.003%~0.100%的硼和铋的分析方法。实验表明:钒基体对硼、铋不产生光谱重叠干扰,但是,高浓度钒的基体效应降低了硼、铋谱线的检测信号强度;钒基体的连续背景叠加导致了硼、铋谱线的背景基线信号强度增强;硼、铋的部分灵敏谱线受到铬、铁等共存杂质元素的谱线重叠干扰。方法采取钒基体匹配和同步背景校正相结合的措施消除了基体效应的影响,通过采用灵敏度高且未受共存组分影响的谱线作为分析谱线和选择合适的检测积分与背景校正区域,提高了痕量硼、铋的检测性能。硼和铋的测定下限分别为0.001 1%和0.002 3%(二者均为质量分数),背景等效浓度分别为0.000 4%和0.001 8%(二者均为质量分数)。样品分析结果的相对标准偏差(RSD,n=8)小于8.0%,加标回收率在93%~110%之间,实际样品测定结果与电感耦合等离子质谱法(ICP-MS)一致。 相似文献
9.
采用电感耦合等离子体原子发射光谱法测定高炉渣中硼,优选了适宜的仪器测定参数和分析谱线,研究了基体效应、共存元素间干扰及校正。实验结果表明,采用H2SO4-H3PO4-H2O2混合酸体系分解试样,可使样品溶解完全。通过对基体及共存元素干扰测定的考察,选择出208.959 nm,249.678 nm两条谱线做为硼的分析线。其中,共存元素Fe谱线(249.653nm)对B线(249.678 nm)的干扰,Mo谱线(208.952 nm)对B线(208.959 nm)的干扰可分别采用离峰单背景扣除及干扰系数校正法 相似文献
10.
在锌的冶炼过程中,为了防止“烧板”现象,需要快速检测锌精矿中锑元素含量。采用硝酸、氢氟酸微波消解样品,消解结束后加入硫酸,用赶酸仪赶氢氟酸,选择Sb 217.582nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定锌精矿中锑。锌质量浓度为0.05~200mg/L时与其发射强度呈线性关系,相关系数为0.9996;方法检出限为0.003%(质量分数,下同),测定下限为0.01%。按照实验方法测定锌精矿样品中锑,结果的相对标准偏差(RSD,n=12)为1.7%;加标回收率为98%~99%。按照实验方法测定4个锌精矿样品中锑,测定结果与氢化物发生-原子荧光光谱法或硫酸铈滴定法的测定结果一致。 相似文献
11.
钴铬钨系合金常温常压下酸溶分解较为困难。实验利用微波消解提高溶样时的温度和压力,在盐酸、硝酸和氢氟酸介质中使样品充分消解。样品溶解后,定容分取,加入酒石酸溶液,在稀盐酸介质中,以W 207.912 nm为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定钴铬钨系合金中钨的方法。结果表明:共存元素对测定结果基本没有影响。在选定的操作条件下,校准曲线的线性相关系数为0.999 9;钨的检出限为0.002 3%(质量分数)。按照实验方法测定钴铬钨系合金粉末中钨,结果的相对标准偏差(RSD,n=11)小于3%,加标回收率为97.4%~102.3%。 相似文献
12.
华阳川铀铌铅多金属矿石中的金属离子被硅晶核包裹,不易浸出,且铌元素易水解沉淀,这些均给测定样品中铌带来了难题。实验采用氢氟酸、硝酸、酒石酸混酸体系以微波消解法处理样品,以Nb 309.418 nm为分析谱线,建立了电感耦合等离子体原子发射光谱法测定华阳川铀铌铅多金属矿石中铌的方法。确定微波消解的程序为:0~30 min从室温达到180 ℃,30~60 min从180 ℃到200 ℃,60~90 min鼓风降温。实验表明:铌的质量浓度在0.10~2.00 μg/mL范围内与其发射强度呈线性关系,线性相关系数为0.999 946,方法检出限为0.002%。因样品中主成分二氧化硅绝大部分在样品制备时已和氢氟酸反应生成四氟化硅逸出,而样品溶液中其他共存元素的质量浓度均不大于80 μg/mL,故基体效应可忽略。采用实验方法测定铌质量分数为0.030 2%~0.189%的华阳川多金属矿石样品,6次平行测定结果的相对标准偏差(RSD)为3.1%~3.9%。考虑到铌钽元素通常伴生,元素性质十分相近,且矿性高度相似,所以实验采用有铌认定值的钽矿石标准物质为测定对象,按照实验方法进行测定,测得结果与认定值基本一致。采用国家标准方法GB/T 17415.2—2010和实验方法进行方法对照,结果表明,二者对华阳川多金属矿石样品中铌的测定结果基本一致。 相似文献
13.
采用电感耦合等离子体原子发射光谱法(ICP-AES)代替传统的化学分析方法,建立了快速测定非晶合金中的高含量硼的方法。对样品的处理方法和测试条件进行研究。结果表明:试样用王水溶解后,加入氢氟酸,继续在90℃水浴中加热溶解试样,试样溶解完全,实现了对难溶合金中B元素的快速测定。在选择硼的分析线为182.640 nm下测定,共存元素没有干扰,基体铁和钴的干扰采用基体匹配方法消除。通过回收试验及精密度试验,证明方法有较高准确度和精密度,分析周期比化学法短。 相似文献
14.
以碳酸钠为熔剂, 在约1 000 ℃的温度下熔融样品, 熔融物用盐酸溶解, 选择249.773 nm波长的谱线为分析线, 用电感耦合等离子体原子发射光谱法(ICP-AES)测定了耐火材料中三氧化二硼含量。熔样时引入大量钠盐, 产生的基体效应对测定有影响, 但可以采用基体匹配方法克服。耐火材料中铝、硅、铁、钛、钙、镁等共存元素对硼的测定没有影响。方法的检出限为0.2 μg/mL。用方法分析了自配含硼耐火材料合成样品, 三氧化二硼测定值与参考值基本一致, 相对标准偏差(RSD, n=6)小于5%。 相似文献
15.
通过微波加热,以8 mL HCl 和2 mL HF溶解铁精矿,并在6 mol/L HCl介质中以甲基异丁基甲酮萃取Fe3+,从而消除了大量Fe对Zr、Hf的光谱干扰,以Zr 339.198{99} nm光谱线和Hf 277.336{121} nm光谱线为分析线,在选定的仪器参数下以电感耦合等离子体原子发射光谱法(ICP-AES)测定了溶液中的Zr和Hf。结果表明,Zr和Hf的原子发射光谱强度与Zr和Hf的含量(分别以ZrO2和HfO2质量浓度计)在0~8.0 μg/mL范围内呈良好的线性关系,校准曲线相关系数r均为0.999 9,方法检出限分别为0.025、0.024 μg/mL。方法用于铁精矿实际样品分析,Zr和Hf测得结果的相对标准偏差(RSD,n=6)分别为0.98%~2.7%和1.5%~4.9%,加标回收率为94%~108%和93%~110%。 相似文献
16.
以氢氟酸、高氯酸为溶剂,采用微波消解法处理高碳铬铁样品,电感耦合等离子体原子发射光谱仪测定溶液中的硅和磷。实验优化了电感耦合等离子体原子发射光谱仪的工作条件,选择251.612 nm和213.618 nm谱线分别作为硅、磷的分析线。探讨了基体元素铁、铬和溶样酸干扰及校正。结果表明,铁和铬对测定影响不大,采用基体匹配法可消除其干扰;溶样酸的干扰可通过控制样品和校准曲线样品的溶样酸一致来减小或消除。硅和磷的检出限分别为0.001 5%和0.002 1%。对高碳铬铁标准样品和实际样品进行分析,结果同认定值或其他方法(碱熔—ICP-AES法、XRF法)的测定值相一致,相对标准偏差为0.40%~5.3%(n=11)。 相似文献