首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对吸附2,4-二氯酚(DCP)后的颗粒活性炭(GAC)进行了微波再生研究,考察了微波功率、微波辐照时间和GAC用量对DCP解吸和GAC损耗的影响。结果表明,DCP解吸率随着微波功率、辐照时间以及GAC用量的增加而提高,但相应的GAC损耗量亦随之增加。微波功率420 W,辐照时间3 min,饱和吸附DCP的GAC 5 g,DCP解吸率达95.5%,而GAC损耗量仅为9.1%。通过测定多次再生后GAC的碘值,表明2次吸附-再生循环后GAC碘值超过了新鲜GAC的碘值,5次循环后GAC碘值下降不明显。  相似文献   

2.
分析了p H对颗粒活性炭(GAC)吸附苯酚性能的影响。实验选择质量分数为1%Na OH溶液,采用微波辅助溶液再生的方法,对吸附苯酚的GAC进行再生研究,探讨实验因素对GAC再生效率的影响。实验结果表明:最佳的再生条件为微波功率520 W、再生时间1.5 min、Na OH再生辅助溶液用量10 m L,此时GAC再生效率为95.6%。在最佳再生条件下,经过6次再生后GAC的吸附能力依然很强。  相似文献   

3.
以巴旦杏核壳为原料,采用微波辐照法制备活性炭。考察了活化条件对活性炭得率和吸附性能的影响。研究结果表明,在活化剂种类、活化剂用量、微波功率和辐照时间4个因素中,微波辐照时间对活性炭质量指标影响最大,延长时间可以提高其产品的得率和吸附性能。巴旦杏核壳基质活性炭的最佳制备工艺:巴旦杏核壳10g,固液比1:3(g:mL),磷酸质量分数40%、浸溃24h,微波功率640W、活化时间16min。在此条件下制得的活性炭的亚甲基蓝吸附值为231.5mg/g,活性炭得率为56.8%。二级动力学模型能很好的描述巴旦杏核壳活性炭对亚甲基蓝大分子的吸附动力学过程。吸附符合Freundlich吸附等温线方程。  相似文献   

4.
采用载铜活性炭(Cu/GAC)吸附含酚废水。考察吸附效果、动力学、工艺条件以及再生次数的影响。结果表明:相比微波辐射活性炭(MW/GAC)、载铁活性炭(Fe/GAC)和原始活性炭(GAC),Cu/GAC处理含酚废水的效果更显著;Cu/GAC对对硝基苯酚(4-NP)和苯酚的吸附动力学曲线均可用准二级动力学模型拟合;在酚质量浓度为200 mg/L、试验用水量为200mL、溶液初始pH值为6.0±0.2、Cu/GAC投加量为10.0 g/L、温度为25.0±0.5℃、反应时间为120 min的优化条件下,4-NP和苯酚的去除率分别达到95.2%和89.5%;炭的投加量、酚溶液的初始质量浓度和溶液初始pH对Cu/GAC处理含酚废水均有较显著的影响;经6次再生后,Cu/GAC仍保持较好的去除能力。  相似文献   

5.
杨朝 《炭素》2011,(3):46-48,13
采用微波辐照法,对制药厂载氮氧化物活性炭再生进行了研究。考察了微波功率、载气线速度、再生时间、活性炭质量、再生次数对活性炭再生率的影响。结果表明:在微波功率为600W,载气线速度为0.002m/s,活性炭质量为15g,辐照时间100s时,活性炭再生率达到94%;活性炭再生率随着再生次数的增加而降低。  相似文献   

6.
制备了5种典型不同微结构特性碳纳米管(CNTs),比较研究了其对水中难降解有机物五氯苯酚(PCP)的吸附特性,和微波法再生后吸附的PCP效果。实验结果表明,5种CNTs对PCP吸附平衡快,60 min内达到平衡,平衡时间差异不大,吸附动力学均遵循准2级反应动力学方程;吸附等温线均符合Freundlich模型,且比表面积大的CNTs吸附量大。主要影响因素中,酸性有利于吸附;温度升高,不利于吸附。对于吸附PCP饱和的CNTs微波辐照3min得以高效再生,吸附、微波再生循环6次,再生率均达90%以上。  相似文献   

7.
利用垃圾微波裂解后固体残留物中的活性炭成分进行含酚废水的吸附试验,考察了垃圾用量、吸附时间、吸附温度、pH值等因素对吸附效果的影响.实验结果表明,垃圾用量为10g,吸附温度25℃,pH值为6.20,振荡吸附时间3.5h的条件下,苯酚吸附效果达到最佳,苯酚在固体残留物上的吸附符合Freundlich等温吸附模型,其吸附动...  相似文献   

8.
以废弃桉木为原料,使用微波磷酸制备活性炭。采用正交实验优化了活性炭的制备工艺条件。结果表明,在微波功率800 W,桉木粉30 g条件下,磷屑比对产品的苯酚吸附值影响显著,磷屑比和微波辐照时间对产品的得率影响显著;制备活性炭的较优工艺条件为:桉木粉30 g,磷屑比为2∶1(质量比),磷酸溶液的质量浓度为70%,浸渍时间20 h,微波辐照时间为25 m in。在此条件下制备的活性炭得率为37.8%,产品的苯酚吸附值为154.3 mg/g。  相似文献   

9.
探讨微波再生活性炭的工艺参数,并利用活性炭对含酚废水进行吸附处理。结果表明,微波再生后活性炭对苯酚的吸附处理能力明显增强。当微波功率为300 W,再生时间为80 s的再生活性炭对苯酚的处理能力最高,COD去除率达70.3%,A270 nm去除率为98.77%,而新鲜活性炭对苯酚的去除率中其COD去除率仅为67.83%,A270 nm去除率为94.35%。活性炭经过微波一次再生后,对苯酚的5次吸附处理能力均高于新鲜活性炭的处理能力;再生二次后,其对苯酚的处理能力与新鲜活性炭的处理能力相当。  相似文献   

10.
研究了氯化锌微波活化法在不同操作条件下制备秸秆基活性炭,探讨了最佳预处理温度、氯化锌的浓度、微波功率和微波辐照时间对活性炭性能的影响。最佳工艺条件为:预处理温度为350℃,氯化锌溶液的质量分数为40%,微波活化功率为550 W,微波辐照时间为6min。对所制得的活性炭进行苯酚吸附、亚甲基蓝吸附和红外光谱及电镜等分析检测。实验最终产率达到40%以上,亚甲基蓝吸附值为70mg/g以上。  相似文献   

11.
研究了磷酸微波活化法在不同操作条件下制备秸秆基活性炭,探讨了最佳预处理温度、磷酸的浓度、微波功率和微波辐照时间对活性炭性能的影响。最佳工艺条件为:预处理温度为500℃,磷酸溶液的质量分数为25%,微波活化功率为450 W,微波辐照时间为5 min。对所制得的活性炭进行苯酚吸附、亚甲基蓝吸附和红外光谱及电镜等分析检测。实验最终产率达到35%以上,亚甲基蓝吸附值为150 mg/g以上。  相似文献   

12.
生产精对苯二甲酸(PTA)时,往往产生大量废水.在初步筛选实验条件的基础上,选择颗粒活性炭(GAC)作为吸附剂处理经过预处理的PTA精制废水.考察了接触时间、pH、GAC用量等因素对废水中有机污染物去除效果的影响.结果表明,吸附平衡时间为2 h,pH在3.0左右对吸附较为有利,吸附等温线符合Frendlich型,GAC的动态吸附容量为63.46 mg/g,可以用20%的NaOH溶液对GAC进行再生,浸泡5 h后的再生率接近90%.  相似文献   

13.
吸附了乙醇气体的活性炭纤维,采用微波辐照法进行解吸及再生得到高浓度乙醇,为回收利用印刷废气中的乙醇提供了一条有效途径。研究了微波功率、辐照时间、活性炭纤维量、氮气流量等对乙醇解吸的影响。结果表明,在微波功率528 W、载气流量1.4 m3/h、活性炭纤维质量3 g、辐照时间180 s的条件下,乙醇的浓度可达到95.6%。  相似文献   

14.
活性炭处理活性艳红X-3B染料废水的静态研究   总被引:1,自引:0,他引:1  
采用活性炭纤维(ACF)、粒状活性炭(GAC)、椰壳活性炭(椰壳AC)分别处理活性艳红X-3B模拟染料废水。实验结果表明,在相同的活性炭用量下,吸附率顺序为:椰壳AC>ACF>GAC;温度10~50℃,吸附效率随温度升高而增大;溶液在弱酸性条件下,3种炭材料均有较好的吸附效果;随着染料溶液浓度的提高,脱色率是下降的;加热和微波均可使GAC和椰壳AC再生,而且再生后的吸附性能均基本可恢复到原来的100%,ACF经微波再生后,吸附量达原来的2.4倍。  相似文献   

15.
活性炭填充床脱除水中苯酚及填充床的再生   总被引:2,自引:1,他引:1  
王红心  纪智玲等 《辽宁化工》2001,30(12):511-513
实验研究了活性炭填充床脱除水中苯酚的吸附性能,探讨其饱和吸附填充床的再生方法,结果表明当平衡浓度范围为0-0.8kg/m^3时,活性炭对水中苯酚的吸附能力达230kg/kg(吸附剂),吸附等温线符合Langmuir型,填充床的穿透曲线和穿透时间强烈依赖于实验条件,较高的进料浓度,较大的进料速度,以及较短的床层长度都将使填充床穿透较快;用热的NaOH稀溶液可再生被苯酚饱和的活性炭纤维填充床,再生效率达90%以上。  相似文献   

16.
吕春芳  高盼盼 《应用化工》2013,(8):1405-1407
以亚甲基蓝为污染物污染活性炭,利用微波辐照的方法对失效的活性炭进行再生。探讨了污泥活性炭的再生性能与辅助溶液的浓度、pH、微波功率、辐照时间、活性炭的用量等因素的关系。结果表明,微波法再生活性炭的最佳条件为:微波功率650 W,辐照时间120 s,辐照活性炭质量3 g。此时,其性能恢复率接近100%,甚至超过100%。  相似文献   

17.
郭宁  卓海波  查庆芳  吴明铂 《炭素》2013,(1):25-30,7
以独山子石油焦为原料,以氯化锌为活化剂,采用微波加热方式制备活性炭,通过碘吸附、苯吸附等考察所制活性炭的吸附性能,并对活性炭的制备工艺条件进行筛选和优化。结果表明:微波加热法制备活性炭时,最佳工艺条件是:氯化锌、石油焦、煤沥青的质量比为1.5:7.5:1,微波功率1300W,辐照时间6min。所得样品比表面积1095.7m^2/g,碘吸附值673.7mg/g,苯吸附值781.1mg/g,强度20.3N。通过与电炉法对比发现,微波加热和电加热制备的活性炭孔结构不同,微波法制备的活性炭在比表面积、孔径分布等方面优于电炉法制备的活性炭。  相似文献   

18.
综述了活性炭吸附-微波再生技术应用于环境污染治理方面的研究进展;阐述了微波再生的作用机理,提出了有待进一步研究的问题。众多实验表明:微波功率、辐照时间、活性炭吸附量等是影响再生活性炭吸附性能的主要因素。  相似文献   

19.
采用反应结晶技术制备了改性活性炭材料(Mg-GAC),并采用 SEM、XRD表征手段对改性前后活性炭进行微观分析,进而研究了 GAC 和 Mg-GAC随吸附时间、溶液pH值和温度变化对废水中铜离子的吸附效果影响。结果表明,GAC经改性后,大大增加了其比表面积,增至738.01m2/g。在Mg-GAC 投加量为0.3g,铜离子浓度为40mg/L,温度为25℃,pH为7的条件下反应2 h,其吸附量达到11.66mg/g。另外,铜离子的吸附过程符合 Langmuir 等温模型。  相似文献   

20.
微波法再生污泥活性炭对水中重金属的吸附特性   总被引:1,自引:0,他引:1  
研究了微波再生条件对污泥活性炭吸附水中重金属效果的影响,探究了其对水中重金属的吸附动力学过程。结果表明随着微波再生功率的增加,再生污泥活性炭对重金属离子的吸附去除率增大,均大于70%。随着微波再生时间的延长,再生污泥活性炭对重金属离子的吸附去除率呈现先增大后稳定的趋势。随着微波次数的增加,再生污泥活性炭对Cu2+、Zn2+、Pb2+和Cd2+的吸附去除率逐渐减少,微波再生的次数最好控制在5次以内。再生污泥活性炭对重金属离子(Cu2+、Zn2+、Pb2+和Cd2+)的吸附符合Langmuir等温式,属于拟二阶动力学模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号