首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Zhou W  Cai L 《Applied optics》1999,38(23):5058-5065
A novel, to our knowledge, optical readout for optical storage with phase jump is presented. In the readout scheme two coherent laser beams are focused on an optical disk with one beam scanning along pits and the other along land. When the probe beam scans across a pit, two phase jumps will take place in the interference resultant of the two beams if the phase difference between two beams is prefixed at pi, resulting in a phase pulse of 180 deg. The slopes of rising and falling edges of the phase pulse are infinite, and they are not affected by the intensity variation of the light source, stray light, and the vibration of the disk. Therefore this phase pulse can be used to read out the information on an optical disk. The use of phase jump will improve the signal-to-noise ratio of the readout signal and enhance the density of optical storage. An optical readout with phase jump was constructed. Both the theoretical design and the experimental verification are conducted. Experimental results show that the proposed optical readout is feasible.  相似文献   

2.
Peng C 《Applied optics》2001,40(23):3922-3931
Readout of a phase-change optical disk with a superresolution (SR) near-field structure (Super-RENS) is theoretically examined on the basis of three-dimensional, full-wave vector diffraction theory. Calculations have demonstrated that Super-RENS has a high spatial resolution beyond the diffraction limit in readout. The read signal is dependent on the nature of SR, the layer structure of the disk, and the state of polarization of the incident laser beam. For the Super-RENS in which antimony is used for SR readout, the readout signal is quite small, and the estimated carrier-to-noise ratio (CNR) is only ~30 dB for marks of 300 nm. For the Super-RENS in which a metallic region is formed during readout, the read signal is large, and the CNR can be as high as 50 dB in reading 300-nm marks.  相似文献   

3.
Hepper D 《Applied optics》2011,50(17):2500-2507
The signal model of a superresolution optical channel can be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector are properly described, a general mathematical model of the superresolution disc itself has not yet been available until recently. Different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects. A complete signal-based or phenomenological optical channel model--from non-return-to-zero inverted input to disc readout signal--has recently been developed including the reflectivity of a superresolution disc with InSb used for the mask layer. In this contribution, the model is now extended and applied to a moving disc including a land-and-pit structure, and results are compared with data read from real superresolution discs. Both impulse response and resolution limits are derived and discussed. Thus the model provides a bridge from physical to readout signal properties, which count after all. The presented approach allows judging of the suitability of a mask layer material for storage density enhancement already based on static experiments, i.e., even before developing an associated disc drive.  相似文献   

4.
Liu JR  Liu PY  Tang NY  Shieh HP 《Applied optics》1998,37(35):8187-8194
New erasable thermal phase-change superresolution (EPSR) disks composed of mask and recording layers can increase recording density by the detection of the below-diffraction-limited marks within the readout spot. The formation of the aperture and the readout signal on the EPSR disk were analyzed. The feasibility of optically designed EPSR disks was evaluated by thermal simulation. A carrier-to-noise ratio of 32 dB at a mark size of 0.4 mum, 8 dB higher than that of a conventional disk, was obtained by application of a pulse-read method to the EPSR disks at a wavelength of 780 nm and a numerical aperture of 0.55.  相似文献   

5.
Lin SI 《Applied optics》2011,50(8):1091-1100
Traditional optical storage technology focuses a laser beam on the surface of a disk using objective lenses. The storage capacity is limited. It entirely depends on the effective disk size. Using colored storage technology to increase the storage capacity is a novel approach. Color is used to store information. After the spectrometer reads the data, the original color is computed and the stored information is read. In this study, a color is used to write colors; optical transmission with a hybrid diffractive/refractive lens produces a transmission spectrum, and then the fiber-optic spectrometer reads and analyzes the color and then decodes the information. Based on a 2.4?μm reading spot size and the implementation of tricolor ink, ~4.561 Gbytes can be stored. If the tricolor ink dripping and laser size can be reduced to 1.80?μm, each disk can store data up to 8.1?GB.  相似文献   

6.
Braat J 《Applied optics》1997,36(30):8056-8062
I consider the influence of different substrate thicknesses on the signal obtained from an optical disk. Two solutions are presented for the reading of different disk types. In one situation a substrate thickness change for disks with equal density is made inoffensive by introduction of a combined amplitude-phase mask in the pupil of the readout objective. In a second situation, where the different thickness is accompanied by a change in optical density, a specific selection in the far field of the detected radiation has proven to be adequate.  相似文献   

7.
Vector diffraction analysis of optical disk readout   总被引:3,自引:0,他引:3  
Cheng X  Jia H  Xu D 《Applied optics》2000,39(34):6436-6440
The optical disk readout signals from ROM disks are presented by use of a rigorous three-dimensional vector diffraction method. The optical disk is modeled as a crossed metal grating without restriction on the form of the information marks, and the permittivity of the metal is taken into account. The diffracted field from the disk is obtained by means of decomposing the focused incident beam into a spectrum of plane waves and then calculating the diffracted plane waves for each respective incident component. The readout signal is obtained by integration of the energy-flux density of the diffracted field according to the detection scheme of the optical disk system. A typical digital versatile disk (DVD) system is applied with this theory, and the result is far from that of scalar diffraction theory.  相似文献   

8.
远距离高精度多普勒位移测量   总被引:2,自引:1,他引:2  
通过泛函、激光散斑理论和随机过程各态遍历的研究,导出激光多普勒信号强度与聚焦光斑直径、接收透镜通光口径、光电接收器响应等参数间的关系,在此基础上设计出一种适用于远距离处面内位移测量的光路。此光路将高斯光束束腰聚焦在被测体上,实现最小聚焦光斑和平面波叠加,此外采用大口径透镜接收散射光,用响应度高的光电接收器转换光电信号等措施获得高强度高信噪比的测量信号。将此光路用于 100m 处面内位移(49.70mm)测量,其精度可达 2%。此设计方法能用于振动或地震波的高精度检测。  相似文献   

9.
The readout characteristics of a magnetooptic transfer (MOT) head were compared with those of a magnetic head. Magnetic recording/readout was done on a CrO2 flexible disk by using a head with a track width of 5 μm. A Bi-substituted garnet film with a domain width of 1.2 μm and an He-Ne laser spot focused down to 3 μm were used as the MOT head. Readout waveforms from both heads were surprisingly similar. The maximum carrier-to-noise ratio obtained was 50 dB (bandwidth: 30 kHz) for both heads. Experimental data for off-track and crosstalk characteristics demonstrated that the MOT head was suitable for use as a high-track-density readout head. The potential advantages of multitrack readout using MOT heads are described  相似文献   

10.
Digital information in optical data storage systems can be encoded in the intensity, in the polarization state, or in the phase of a carrier laser beam. Intensity modulation is achieved at the surface of the storage medium either through destructive interference from surface-relief features (e.g., CD or DVD pits) or through reflectivity variations (e.g., alteration of optical constants of phase-change media). Magneto-optical materials make use of the polar magneto-optical Kerr effect to produce polarization modulations of the focused beam reflected from the storage medium. Both surface-relief structures and material-property variations can create, at the exit pupil of the objective lens of the optical pickup, a phase modulation (this, in addition to any intensity or polarization modulation or both). Current optical data storage systems do not make use of this phase information, whose recovery could potentially increase the strength of the readout signal. We show how all three mechanisms can be exploited in a scanning optical microscope to reconstruct the recorded (or embedded) data patterns on various types of optical disk.  相似文献   

11.
Zhu L  Wang M  Chen W 《Applied optics》2011,50(34):6327-6335
In order to conveniently and precisely estimate the spot size of laser modes in continuously single-end-pumped solid-state lasers, a ray matrix for the thermal-induced lenslike medium with exponential heat distribution along the axial direction is, for the first time to our best knowledge, derived under assumptions of only radial heat flow and uniform pump spot size. An equivalent optical model is also developed and especially modified for a lenslike gain medium in a continuously single-end-pumped solid-state laser. The result is verified by discussing how it fits the practical cases much better than the previous simplified model and by numerical simulation in a practice problem. This work is especially important in cases with a relatively long gain medium, which has been used more and more frequently in recent years.  相似文献   

12.
Kobayashi S 《Applied optics》2002,41(14):2679-2685
A point-spread function (PSF) is commonly used as a model of an optical disk readout channel. However, the model given by the PSF does not contain the quadratic distortion generated by the photo-detection process. We introduce a model for calculating an approximation of the quadratic component of a signal. We show that this model can be further simplified when a read-only-memory (ROM) disk is assumed. We introduce an edge-spread function by which a simple nonlinear model of an optical ROM disk readout channel is created.  相似文献   

13.
Wang W  Luo Y  Zhang D  Luo F 《Applied optics》2006,45(14):3378-3381
Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films are irradiated by a near-infrared continuous-wave laser beam and the dynamic optical limiting performance is measured. The temperature varying with time of the films induced by a laser beam is also recorded by an IR thermal sensor. Under the irradiation of a laser beam with an intensity of 255 W/cm2 and a spot diameter of 2 mm, the laser beam transmittance of the VO2 film decreases from 47% before phase transition to 28% after phase transition, and the response time is approximately 200 ms; the laser beam transmittance of the V2O5 film decreases from 51% before phase transition to 24% after phase transition, and the response time is approximately 40 ms. The optical limiting is realized by this laser heating-induced phase transition.  相似文献   

14.
A novel rewritable optical disk that uses an optical recording material made of naphthalocyanine and polythiophene as the recording layer is described. In this system the complex refractive index of the recording material changes reversibly, depending on the aggregation states of naphthalocyanine induced by a conformation change of the polythiophene matrix. After recording, the imaginary part of the refractive index of the recording material increases to three times that of the unrecorded part, at a wavelength of 790 nm at which a semiconductor laser emits light. The fabricated polythiophene naphthalocyanine optical disk shows a high reflectivity of 58% and a large readout modulation amplitude (I(11)/I(top)) of 0.63. It is confirmed that the polythiophene/naphthalocyanine optical disk can be played back on conventional compact-disc players even after ten cycles of rewriting.  相似文献   

15.
Interferometric gravitational wave detectors are designed to detect small perturbations in the relative lengths of their kilometer-scale arms that are induced by passing gravitational radiation. An analysis of the effects of imperfect optical alignment on the strain sensitivity of such an interferometer shows that to achieve maximum strain sensitivity at the Laser Interferometer Gravitational Wave Observatory requires that the angular orientations of the optics be within 10(-8) rad rms of the optical axis, and the beam must be kept centered on the mirrors within 1 mm. In addition, fluctuations in the input laser beam direction must be less than 1.5 x 10(-14) rad/ radicalHz in angle and less than 2.8 x 10(-10) m/ radicalHz in transverse displacement for frequencies f > 150 Hz in order that they not produce spurious noise in the gravitational wave readout channel. We show that seismic disturbances limit the use of local reference frames for angular alignment at a level approximately an order of magnitude worse than required. A wave-front sensing scheme that uses the input laser beam as the reference axis is presented that successfully discriminates among all angular degrees of freedom and permits the implementation of a closed-loop servo control to suppress the environmentally driven angular fluctuations sufficiently.  相似文献   

16.
Wu FH  Shieh HP  Huang DR  Milster TD 《Applied optics》2004,43(29):5498-5502
A volumetric optical disk that has multiple transparent films with optical switching layers is used as a recording medium to increase the number of recording layers. In the disk the optical switching layer is adapted to reduce decay of laser energy and increase reading and recording sensitivity. Well-defined marks of approximately 100-nm depth can be placed precisely on the transparent films by a focused laser beam. Writing and reading of a four-layer recordable disk, fabricated by molding and spin bonding, have been demonstrated experimentally. The volumetric disk can achieve a high recording capacity with conventional optical pickups.  相似文献   

17.
Gerber RE  Gardner TS  Kay DB 《Applied optics》1998,37(35):8173-8180
In an optical disk drive, it is well known that a tilt of the disk causes an offset in the tracking-error signal (TES). One effect of disk tilt is the introduction of a dc component to the TES, which can be largely corrected by operation of the tracking system at the midpoint between the maximum and the minimum values of the open-loop TES. However, this method of correcting for the dc shift in the TES does not correct for the effect of coma in the focused spot, which leads to track offset. The track offset of a system is defined as the distance between the peak irradiance in the focused spot and the center of the groove when the tracking system is operating at the midpoint between the maximum and the minimum values of the open-loop TES in the presence of disk tilt. Calculations are performed that show the dependence of track offset on various system parameters, including track pitch, wavelength, and numerical aperture and rim intensity of the objective lens, and on the regions of the beam used to generate the TES. The track offsets for several beam-segmentation schemes are calculated for a digital versatile disk that uses push-pull and differential phase tracking. It is shown that for differential phase tracking the value of track offset depends on the mark length.  相似文献   

18.
M R Wang  X G Huang 《Applied optics》1999,38(11):2171-2176
The diffraction-limited spot size limits the optical disk storage capacity and microscopic resolution. We describe a technique to shape a focused Gaussian beam into a superresolving beam by using a diffractive optical element fabricated by laser-assisted chemical etching. The focused shaped beam has a smaller width and a longer depth of focus than a similarly focused Gaussian beam. Using the diffraction-limited shaped beam along with threshold writing, we achieved a written pit size of less than 0.33 mum at a 695-nm laser wavelength, compared with a 0.7-mum focused Gaussian spot size (full width at e(-2) of the peak) with the same focusing lens. The energy conversion efficiency for the beam shaping was ~81%.  相似文献   

19.
In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.  相似文献   

20.
A dynamic testbed for the evaluation of optical disks has been designed and constructed. The system is achromatic within the wavelength range 440-690 nm, allowing any light source in this range to be utilized for read-write-erase experiments. In addition, the system accepts disks with substrate thicknesses ranging from 0 to 1.7 mm. The polarization handling capabilities of the testbed are such that, with the turn of a knob, one can generate either linearly polarized or circularly polarized light at the disk surface. This feature permits the testing of both magneto-optical and phase-change disks, in addition to compact disks and digital versatile disks, without any modifications to the system. A leaky polarizing beam splitter (LPBS) has been specially designed and built for this tester. The LPBS allows continuous adjustment of the ratio between p- and s-polarized components of the reflected beam that reach the detectors. This feature is especially useful for magneto-optical disks, where one can achieve an optimum signal-to-noise ratio by adjusting the relative amounts of the two components of polarization at the detection module. Focus-error detection is based on the astigmatic method, and the primary track-error detection scheme is the push-pull method, although other focusing and tracking schemes may also be implemented. The rf data signal and the focusing and tracking servo signals are all derived from the same detectors, thus allowing the optical power returning from the disk to be used in its entirety for these multiple purposes. The detection channel consists of two high-speed quad detectors mounted on the two arms of a differential detection module. By combining the various outputs of these detectors it is possible to generate the astigmatic focus-error signal, the push-pull track-error signal, the differential magneto-optical readout signal, the conventional sum signal for phase-change disk readout, and the differential edge-signal for mark-edge detection on various types of optical media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号