共查询到19条相似文献,搜索用时 68 毫秒
1.
2.
流形学习中基于局部线性结构的自适应邻域选择 总被引:1,自引:0,他引:1
近年来,流形学习成为包括机器学习、模式识别和计算机视觉等相关领域的研究热点.流形学习算法中,邻域选择直接关系到算法的性能,而传统的邻域选择算法如k近邻和ε邻域算法存在参数难以确定,所构建邻域不能反映流形学习算法对邻域要求等缺点.提出了一种基于流形局部线性结构的自适应邻域选择算法(ANSLL).首先通过分析现有流形学习算法,总结出构建邻域的两个基本原则:1)同一邻域的所有点都近似地位于某一d维线性子空间内(d为流形维数);2)每个邻域包含尽可能多的点.基于这两个基本原则,ANSLL 算法采用主成分分析技术(PCA)度量有限点集的线性程度,通过邻域压缩或扩张方式自适应地构建邻域.针对邻域线性结构的特点,还提出了一种改进的邻域图构建方法,以提高等度映射(Isomap)算法中测地线距离估计的准确性.最后大量系统的实验表明,ANSLL算法能够依据流形的局部曲率自适应地构建邻域,从而提高大多数流形学习算法(如Isomap和LLE)的性能. 相似文献
3.
邻域参数动态变化的局部线性嵌入 总被引:8,自引:1,他引:8
局部线性嵌入是最有竞争力的非线性降维方法,有较强的表达能力和计算优势.但它们都采用全局一致的邻城大小,只适用于均匀分布的流形,无法处理现实中大量存在的非均匀分布流形.为此,提出一种邻域大小动态确定的新局部线性嵌入方法.它采用Hessian局部线性嵌入的概念框架,但用每个点的局部邻域估计此邻域内任意点之间的近似测地距离,然后根据近似测地距离与欧氏距离之间的关系动态确定该点的邻域大小,并以此邻域大小构造新的局部邻域.算法几何意义清晰,在观察数据稀疏和数据带噪音等情况下,都比现有算法有更强的鲁棒性.标准数据集上的实验结果验证了所提方法的有效性. 相似文献
4.
《计算机应用与软件》2013,(5)
非线性结构保持能力的不足是正则正交化的线性判别分析ROLDA(Regularized Orthogonal Linear Discriminant Analysis)在人脸识别中的主要问题。提出一个用于人脸识别的正则正交化的局部Fisher判别分析ROLFDA(Regularized Orthogonal LocalFisher Discriminant Analysis)降维算法。该算法在ROLDA基础上引入局部结构保持,继承ROLDA的特性,克服了ROLDA的非线性能力的不足的问题。在YaleB和AR人脸数据集上的实验验证了该算法的有效性。 相似文献
5.
《计算机应用与软件》2014,(2)
针对目前流形学习方法的嵌入效果非常敏感于局部邻域的选取方式,提出一种自适应邻域图的非线性数据降维方法。该方法考虑数据点周围的点分布信息,自适应地寻找最近邻域大小。不同于传统的邻域选取方法,此方法根据样本点周围的疏密程度来动态地获得最近邻域数,且所得到的各个样本点的邻域数是不等的;将每个样本点与其最近邻点连接,构建自适应邻域图进行有效降维。在人工生成数据集和人脸数据上的仿真结果表明,提出的方法得到了良好的降维效果。 相似文献
6.
相对于人脸和指纹等广泛使用的生物特征识别手段而言,步态识别是一种相对新的非接触式的身份识别方法。提出了一种基于改进的局部敏感判别分析的步态识别方法。在真实的步态数据库上的实验结果表明,提出的步态识别方法是有效可行的。 相似文献
7.
针对现有基于流形学习的降维方法对局部邻域大小选择的敏感性,且降至低维后的数据不具有很好的可分性,提出一种自适应邻域选择的数据可分性降维方法。该方法通过估计数据的本征维度和局部切方向来自适应地选择每一样本点的邻域大小;同时,使用映射数据时的聚类信息来汇聚相似的样本点,保证降维后的数据具有良好的可分性,使之实现更好的降维效果。实验结果表明,在人工生成的数据集上,新方法获得了较好的嵌入结果;并且在人脸的可视化分类和图像检索中得到了期望的结果。 相似文献
8.
为克服边界Fisher判别分析(MFA)只利用少量有标记样本和构建邻域不能充分反映流形学习对邻域要求的缺点,提出一种基于局部线性结构的自适应邻域选择半监督判别分析的算法。采用自适应算法扩大或者缩小近邻系数k来构建邻域以保持局部线性结构。MFA通过少量有类别标签样本进行降维的同时UDP对大量无标签样本进行学习,以半监督的方法对高维人脸数据进行维数约减。最后,在ORL和YALE人脸数据库通过实验结果验证了该算法的有效性。 相似文献
9.
一种自适应邻域选择算法 总被引:1,自引:0,他引:1
提出一种自适应邻域选择算法,适用于所有基于局部的流形学习算法.该算法能够根据数据集分布的不同密度和曲率选择合适的邻域大小,同时结合局部多维尺度变换(LMDS),在合适的邻域下直接降维并通过全局整合得到数据集的低维坐标.实验表明该算法可较好恢复较复杂数据集的低维几何结构. 相似文献
10.
自适应局部线性降维方法 总被引:1,自引:0,他引:1
《计算机应用与软件》2013,(4)
高维数据降维方法已经被广泛应用在信息检索、模式识别、数据挖掘和人工智能等领域。针对目前流形学习方法的嵌入效果非常敏感于局部邻域的选取方式,提出一种自适应邻域选择的局部线性降维方法。该方法评估真实数据的固有维数,判断每一数据点的局部切方向,以便自适应地选择每一数据点的邻域数,使得不同数据集与邻域选取方式之间存在很好的自适应性,实现更好的降维效果。在人工生成数据集和医学数据上的仿真结果表明,该方法起到了良好的降维效果。 相似文献
11.
提出了一种新的局部保持鉴别分析算法:基于迹比准则与自适应近邻图嵌入的局部保持鉴别分析算法。根据样本分布特性自适应构建类内和类间近邻图,保持数据的局部结构并且利用数据的鉴别信息,定义局部类内离差矩阵以及局部类间离差矩阵,采用迹比Fisher判别函数作为目标函数,通过迭代的方法最大化局部类间离差矩阵与类内离差矩阵的迹比值,解得最优子空间。在ORL和Yale人脸数据库上的实验表明该方法是有效的。 相似文献
12.
针对利用局部化思想解决多模数据的判别分析问题时,根据经验对局部邻域大小进行全局统一设定无法体现局部几何结构的差异性的不足,提出一种邻域自适应半监督局部Fisher判别分析(neighborhood adaptive semi-supervised local Fisher discriminant analysis,NA-SELF)算法。该算法在半监督局部Fisher判别分析算法的基础上,结合马氏距离和余弦相似度确定初始近邻数,并根据样本空间概率密度估计调整近邻数。通过人工数据集和5组UCI标准数据集对该算法的特征降维性能进行验证,并与典型的维数约简算法和采用传统k近邻方法的判别分析算法进行比较,实验结果表明该算法具备更高的有效性。 相似文献
13.
14.
降维是处理高维数据的一项关键技术,其中线性判别分析及其变体算法均为有效的监督算法。然而大多数判别分析算法存在以下缺点:a)无法选择更具判别性的特征;b)忽略原始空间中噪声和冗余特征的干扰;c)更新邻接图的计算复杂度高。为了克服以上缺点,提出了基于子空间学习的快速自适应局部比值和判别分析算法。首先,提出了统一比值和准则及子空间学习的模型,以在子空间中探索数据的潜在结构,选择出更具判别信息的特征,避免受原始空间中噪声的影响;其次,采用基于锚点的策略构造邻接图来表征数据的局部结构,加速邻接图学习;然后,引入香农熵正则化,以避免平凡解;最后,在多个数据集上进行了对比实验,验证了算法的有效性。 相似文献
15.
针对高维输入数据维数较大时可能存在奇异值问题,同时为提高算法的运算效率以及算法的鲁棒性,提出了一种基于L1范数的分块二维局部保持投影算法B2DLPP-L1。传统的局部保持投影算法为避免出现奇异值问题,首先运用主成分分析算法将高维数据投影到子空间中,然而这种方式将会造成高维数据中部分有效信息的流失,B2DLPP-L1算法选择将二维数据直接作为输入数据,避免运用向量形式的输入数据时可能造成的数据流失;同时该算法对二维输入数据进行分块处理,将分块后的数据块作为新的输入数据,之后运用基于L1范数的二维局部保持投影算法对其进行降维。理论上,B2DLPP-L1算法能够较好地对数据进行降维,不仅能够保持高维数据中的有效信息,降低计算复杂程度,提高算法的运行效率,同时还能够克服存在外点情况下分类准确率较低问题,提高算法的鲁棒性。通过选择不同的人脸数据库进行实验,实验结果表明,在存在外点的情况下,运用最近邻分类器时能够取得更高的分类准确率,同时所需的分类时间有所减少。 相似文献
16.
黄东 《计算机工程与应用》2012,48(11):185-188
非线性流形学习降维方法已经被广泛应用到人脸识别、入侵检测以及传感器网络等领域。然而,能够有效处理稀疏数据的流形学习算法很少。基于局部线性嵌入(LLE)算法的思想框架,提出一种扩大局部邻域的稀疏嵌入算法,通过对局部区域信息加强,使得在样本较少的情况下,达到丰富重叠信息的目的。在稀疏的人工和人脸数据集上的实验结果表明,所提算法产生了较好的嵌入及分类结果。 相似文献
17.
提出一种基于图像矩阵判别局部保持投影的人脸识别方法。图像矩阵判别局部保持投影是在局部保持投影基础上进行了扩展,考虑了类标签信息并在其目标函数中增加类间散度约束,使得求解的特征更具判别性。另外,图像矩阵判别局部保持投影是直接处理图像矩阵而不需要将矩阵转化为向量,保留了像素间的空间位置关系,避免了奇异性问题。实验结果表明该方法是有效的。 相似文献
18.
19.
针对人脸识别问题,提出了最小距离鉴别投影算法,其与经典的线性鉴别分析不同,它是一种流形学习降维算法。该算法首先定义样本的类内相似度与类间相似度:前者能够度量样本与类内中心的距离关系,后者不仅能够反映样本与类间中心的距离关系而且能够反映样本类间距与类内距的大小关系;然后将高维数据映射到低维特征空间,使得样本到类内中心距离最小同时到类间中心距离最大。最后,在ORL、FERET及AR人脸库上的实验结果表明所提算法识别性能要优于其他算法。 相似文献