首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于混合遗传聚类的入侵检测算法   总被引:2,自引:0,他引:2  
提出了基于混合遗传聚类的入侵检测算法——IDBHGC,它能自动完成初始聚类簇集合建立、组合优化和入侵行为标识的整个检测过程。实验证明,该算法在已有研究基础上进一步提高了检测性能。  相似文献   

2.
本文提出了基于改进遗传算法的特征加权模糊聚类算法(IG-WFCM),通过对样本数据集进行聚类划分,以此来确定数据所属的类别。并通过入侵检测仿真实验对该算法进行了测试,结果表明本文的算法是可行的,在一定程度上提高了入侵检测算法的性能和效率。  相似文献   

3.
基于量子遗传聚类算法的入侵检测   总被引:1,自引:0,他引:1       下载免费PDF全文
汪林林  朱开伟 《计算机工程》2009,35(12):134-136
针对传统入侵检测算法当面临未知攻击时所缺乏的自适应性和智能化日益突出的问题,提出一种新的无监督、自适应的检测算法——量子遗传聚类算法(CQGA)。该算法利用各实例之间的欧氏距离作为相似度量标准,通过量子遗传算法寻找聚类中心以达到在无监督的条件下对数据集自动分类的目的。实验仿真结果显示,该算法能较为准确地对测试数据集进行分类,有效地解决自适应性和智能化问题。  相似文献   

4.
传统的入侵检测方法在面对多变的网络结构时缺乏可扩展性,而且在未知的攻击类型面前也缺乏适应性。因此,提出一种新的检测方法——基于遗传聚类的网络异常检测(NAIDGC)算法。对聚类中心采用二进制编码,把每一个点到它们各自的聚类中心的欧几里得距离的总和作为相似度量,通过遗传算法寻找聚类中心。计算机仿真结果显示了此算法对入侵检测是有效的。  相似文献   

5.
基于聚类和免疫遗传的入侵检测系统研究   总被引:1,自引:0,他引:1  
针对C-均值聚类算法容易陷入局部最优且对初始解很敏感的问题,提出了一种新的基于聚类分析和免疫遗传算法相结合的入侵检测模型,并且改进了免疫遗传算法,使得算法在全局搜索能力和收敛速度上都有所提高,明显地避免了对初始化选值敏感性的问题,而且通过试验证明该入侵模型优于经典遗传算法和C-均值聚类算法,达到了预期的效果.  相似文献   

6.
针对装配线平衡问题(ALBP),文中提出了一种禁忌搜索遗传混合算法。在混合算法中,遗传算法部分采用特殊的遗传变异操作算子(双点交叉和移位插入变异),使算法只在可行作业序列子空间中进行搜索,有效减小了搜索范围,提高了算法运行效率;禁忌搜索部分是在每代遗传操作完成以后,随机选择一些个体进行禁忌搜索操作,来增强算法的搜索能力。最后以经典问题的求解验证了禁忌搜索遗传算法在收敛性能和计算效率上较使用单纯的遗传算法高。  相似文献   

7.
张永  朱林杰 《计算机工程》2011,37(8):183-185
为提高入侵检测的精度,提出一种使用遗传禁忌搜索的分类器选择集成方法。该方法采用Bagging算法构建初始分类器集合,根据遗传禁忌搜索算法选择分类器子集,以该子集建立多分类器系统进行入侵检测。实验结果表明,与Bagging算法相比,该方法能有效提高检测精度、降低误报率。  相似文献   

8.
基于禁忌搜索遗传混合算法的装配线平衡   总被引:2,自引:0,他引:2  
针对装配线平衡问题(ALBP),文中提出了一种禁忌搜索遗传混合算法.在混合算法中,遗传算法部分采用特殊的遗传变异操作算子(双点交叉和移位插入变异),使算法只在可行作业序列子空间中进行搜索,有效减小了搜索范围,提高了算法运行效率;禁忌搜索部分是在每代遗传操作完成以后,随机选择一些个体进行禁忌搜索操作,来增强算法的搜索能力.最后以经典问题的求解验证了禁忌搜索遗传算法在收敛性能和计算效率上较使用单纯的遗传算法高.  相似文献   

9.
提出一种将粒子群优化(PSO)和FCM 相结合的聚类算法PSOFCA对入侵检测系统进行研究,克服FCM方法自身对初始值敏感、容易陷入局部最优等问题。最后对实验数据进行仿真实验,并将实验结果与其他算法结果相比较,结果表明PSOFCA算法在入侵检测中能获得较好的检测能力。  相似文献   

10.
基于量子遗传聚类的入侵检测方法*   总被引:1,自引:0,他引:1  
现有基于聚类的入侵检测算法,聚类过程中需要预设聚类数,且算法的性能受初始数据输入顺序的影响,为此提出了一种新的基于量子遗传聚类入侵检测方法。该方法的基本思想是先自动建立初始聚类簇,再用改进量子遗传算法对初始聚类组合优化,最后进行入侵检测。实验结果表明,该方法能够有效地检测出网络中的入侵数据。  相似文献   

11.
针对遗传算法局部搜索能力弱和收敛速度慢,在选择操作之后加上了禁忌搜索算法,并对交叉操作进行改进,最后用禁忌搜索作为变异操作,从而加快算法的收敛速度,并用此改进的遗传算法来优化BP神经网络的权值。实验证明,采用该方法优化BP神经网络权值,能克服BP神经网络收敛速度慢、局部极小问题。  相似文献   

12.
k均值聚类算法在入侵检测中已经得到了广泛的研究。该文在k均值算法基础上,提出了改进的k均值算法。将k均值算法和改进的k均值算法分别应用于入侵检测。试验结果表明,改进后的k均值算法能够避免k均值算法固有的缺点,并且有比较高的检测性能。  相似文献   

13.
遗传禁忌算法优化BP网络用于入侵检测   总被引:3,自引:1,他引:3  
针对入侵检测系统存在的高漏报率和误报率,提出一种基于遗传禁忌神经网络的入侵检测模型。该模型基于遗传禁忌算法的全局搜索和BP网络局部精确搜索的特性,将遗传禁忌算法和BP算法有机结合,利用遗传禁忌算法优化BP网络初始权重,同时引入小生境技术改进遗传禁忌算法。实验表明,改进的遗传禁忌算法优化BP网络用于入侵检测能提高入侵检测的效率,降低误警率,可在一定程度上提高入侵检测系统的准确率。  相似文献   

14.
针对网络行为数据中带标签数据收集困难及网络行为数据的异构性,提出了一种基于异构距离和样本密度的半监督模糊聚类算法,并将该算法应用到网络入侵检测中。该方法依据网络行为数据样本的异构性计算样本与类之间的异构距离及各个类的样本密度,利用异构距离和类内样本密度计算样本与类之间的模糊隶属度,用所得隶属度对无标签样本进行加标签处理,并得到相应的分类器。在KDD CUP99数据集上进行仿真实验,结果表明该方法是可行的、高效的。  相似文献   

15.
改进FCM聚类算法及其在入侵检测中的应用   总被引:2,自引:0,他引:2  
针对模糊C-均值(FCM)算法的局限性,提出了一种具有两阶段的模糊FCM聚类改进算法。通过加入点密度函数加权系数和样本特征矢量权重对FCM聚类算法中的目标函数进行改造,进而给出迭代推导公式和算法描述。该算法克服了样本分布不均匀和样本特征矢量对分类贡献不均衡的情况,有效地提高了聚类精度。最后利用KDD CUP 99数据集进行实验,结果表明该算法具有良好的可靠性和可行性。  相似文献   

16.
Data mining technology is applied to the network intrusion detection, and precision of the detection will be improved by the superiority of data mining. This paper, first analyzes the method of wireless network intrusion detection, presents a wireless network intrusion detection algorithm based on association rule mining. The application of fuzzy association rules in the wireless network intrusion detection is mainly discussed; a comparative analysis with the classical algorithm Apriori is made by experiment. The result shows that the fuzzy rule mining algorithm is more convenient than Apriori algorithm.  相似文献   

17.
基于无监督聚类混合遗传算法的入侵检测方法   总被引:3,自引:0,他引:3  
在利用聚类进行入侵检测的方法中,有效地进行聚类是关键。为了对未标识数据进行聚类,提出了一种新的无监督入侵检测方法。该方法克服了聚类算法中对数据输入顺序敏感和需要预设聚类数目的缺点,减少了所需参数个数。通过初始聚类簇的建立和混合遗传算法对初始聚类进行优化组合两阶段的方法来实现聚类,克服了初始聚类对结果的影响,提高了聚类质量,并进行检测入侵。实验结果表明该方法有较好的检测率和误检率。  相似文献   

18.
一种新的半监督入侵检测算法   总被引:3,自引:0,他引:3  
宋凌  李枚毅  李孝源 《计算机应用》2008,28(7):1781-1783
针对无监督学习的入侵检测算法准确度不高、监督学习的入侵检测算法训练样本难以获取的问题,提出了一种粒子群改进的K均值半监督入侵检测算法,利用少量的标记数据生成正确样本模型来指导大量的未标记数据聚类,对聚类后仍未能标记的数据采用粒群优化的K均值聚类,有效提高分类器的分类准确性,并实现了对新类型攻击的检测。实验结果表明,算法的整体检测效果明显优于基于无监督学习和监督学习的检测算法。  相似文献   

19.
针对模糊C均值聚类算法受初始聚类中心影响过大以及易于陷入局部极值的问题,采用具有Levy flight模式且具有很强全局搜索能力的布谷鸟搜索算法,对模糊C均值聚类算法初始聚类中心进行优化,并把优化后的模糊C均值聚类算法应用于网络入侵检测。实验结果显示,经过优化后的模糊C均值聚类算法具有较好的运行速度和聚类效果,对入侵行为的检测效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号