首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
马庆 《计算机科学》2016,43(Z11):117-122, 160
在进化多目标优化研究领域,多目标优化是指对含有2个及以上目标的多目标问题的同时优化,其在近些年来受到越来越多的关注。随着MOEA/D的提出,基于聚合的多目标进化算法得到越来越多的研究,对MOEA/D算法的改进已有较多成果,但是很少有成果研究MOEA/D中权重的产生方法。提出一种使用多目标进化算法产生任意多个均匀分布的权重向量的方法,将其应用到MOEA/D,MSOPS和NSGA-III中,对这3个经典的基于聚合的多目标进化算法进行系统的比较研究。通过该类算法在DTLZ测试集、多目标旅行商问题MOTSP上的优化结果来分别研究该类算法在连续性问题、组合优化问题上的优化能力,以及使用矩形测试问题使得多目标进化算法的优化结果在决策空间可视化。实验结果表明,没有一个算法能适用于所有特性的问题。然而,MOEA/D采用不同聚合函数的两个算法MOEA/D_Tchebycheff和MOEA/D_PBI在多数情况下的性能比MSOPS和NSGA-III更好。  相似文献   

2.
权重求和是基于分解的超多目标进化算法中常用的方法, 相比其他方法具有计算简单、搜索效率高等优点, 但难以有效处理帕累托前沿面(Pareto optimal front, PF)为非凸型的问题. 为充分发挥权重求和方法的优势, 同时又能处理好PF为非凸型的问题, 本文提出了一种基于目标空间转换权重求和的超多目标进化算法, 简称NSGAIII-OSTWS. 该算法的核心是将各种问题的PF转换为凸型曲面, 再利用权重求和方法进行优化. 具体地, 首先利用预估PF的形状计算个体到预估PF的距离; 然后, 根据该距离值将个体映射到目标空间中预估凸型曲面与理想点之间的对应位置; 最后, 采用权重求和函数计算出映射后个体的适应值, 据此实现对问题的进化优化. 为验证NSGAIII-OSTWS的有效性, 将NSGAIII-OSTWS与7个NSGAIII的变体, 以及9个具有代表性的先进超多目标进化算法在WFG、DTLZ和LSMOP基准问题上进行对比, 实验结果表明NSGAIII-OSTWS具备明显的竞争性能.  相似文献   

3.
基于进化算法的多目标优化方法   总被引:10,自引:0,他引:10  
进化算法在解决多目标优化问题中有其特有的优势.首先对多目标优化问题进行了描述;然后结合研究现状讨论了目前几种主要的基于进化算法的多目标优化方法,以及它们的优缺点;最后给出了多目标进化优化算法的一些应用,以及进化多目标优化算法的未来发展方向.  相似文献   

4.
量子多目标进化算法研究   总被引:1,自引:2,他引:1  
本文首次将量子计算的理论用于多目标优化,提出量子多目标进化算法(QMOEA),其采用量子位染色体表示法,利用量子门旋转策略和量子变异实现群体的进化,使用ε支配关系构造外部种群以此保持算法的较好分布性,提出基于快速排序的非劣最优解构造方法加快算法运行效率,实验表明,这种方法与经典的多目标进化算法SPEA2相比,其收敛性更好且分布更均匀  相似文献   

5.
第一次将量子计算的理论用途于多目标优化之上可以提出量子多目标进化算法其采用量子位研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。  相似文献   

6.
贺群  程格  安军辉  戴光明  彭雷 《计算机科学》2012,39(103):489-492
为了克服部分多目标进化算法中容易出现退化与早熟,造成收敛速度过慢的不足,结合精英保留策略、基于近部规则的环境选择以及免疫克隆算法中的比例克隆等思想,提出一种基于Pareto的多目标克隆进化算法NPCA(Non-dominated Pareto Clonal Algorithm)。通过部分多目标优化测试函数ZDT和DTLZ对算法进行了性能测试,验证了该算法能获得分布更加均匀的Parcto前沿,解的收敛性明显优于典型的多目标进化算法。  相似文献   

7.
基于指标的多目标进化算法研究   总被引:2,自引:1,他引:1       下载免费PDF全文
张景成  戴光明 《计算机工程》2009,35(23):187-189
基于指标的进化算法(IBEA)是一个出色的多目标优化算法。IBEA具有良好的收敛性,但在保持解的多样性方面对于某些问题却表现较差。对IBEA进行研究,分析其适应度分配原理,针对其缺点进行改进,并将IBEA与其他2个算法进行了测试比较。测试结果表明改进后的IBEA在保持了原算法优点的情况下使其在解的多样性方面有了较大改观。  相似文献   

8.
个体的适应度赋值和群体的多样性维护是进化算法的两个关键问题。首先,一方面,定义了Paretoε-支配关系的相关概念,通过Paretoε-支配关系确定个体的强度Pareto值,根据个体的强度Pareto值对群体进行Pareto分级排序,实现优胜劣汰;另一方面,使用拥挤距离估算个体的拥挤密度,淘汰位于拥挤区的一些个体,维持群体的多样性。然后,根据差分进化算法的特点,使用适当的进化策略和控制参数,给出了一种用于求解多目标优化问题的差分进化算法DEAMO。最后,数值实验表明,DEAMO在求解标准的多目标优化问题时性能表现优良。  相似文献   

9.
进化算法求解多目标优化问题平衡收敛性和多样性面临的主要挑战在两个方面:增强对帕累托最优前沿的选择压力和获得多样性良好的解集。然而,随着目标维数的增加,基于帕累托支配关系的选择标准无法有效地解决以上问题。因此,设计了一种基于小生境的多目标进化算法。基于小生境,提出了一种新的支配关系,其中,设计了一个聚合函数和一种采用目标向量角的密度估计方法分别度量候选解的收敛度和分布性。为了保证解集的收敛性,在同一个小生境内,仅仅收敛度最好的解是非支配解。为了维护解集的多样性,在任何两个不同的小生境内,一个小生境内兼具收敛度和分布性良好的解支配另一个小生境内收敛性和分布性均差的解,将提出的支配关系嵌入VaEA取代帕累托支配关系,设计了一种多目标进化算法VaEA-SDN。VaEA-SDN与NSGA-Ⅲ、VaEA、MSEA、NSGAII-CSDR、RPS-NSGAII以及CDR-MOEA等先进的算法在DTLZ(Deb-Thiele-Laumanns-Zitzler)和MaF(manyobjective function)基准测试系列问题上进行了广泛的对比仿真实验。仿真结果表明,VaEA-SDN平衡收敛收敛性...  相似文献   

10.
当多目标问题的帕累托前沿形状较为复杂时,基于分解的多目标进化算法MOEA/D的解的均匀性将受到很大的影响. MOEA/D利用相邻子问题的信息来优化,但早期因为种群中的个体与子问题的关联是随机分配的,仅在邻居间更新会浪费优秀解的信息,影响收敛速度.针对这些问题,本文提出一种MOEA/D的改进算法(MOEA/DGUAW).该算法使用种群全局更新的策略,来提高收敛速度;使用自适应调整权重向量的策略来获得更均匀分布的解集.将MOEA/D-GUAW算法与现有的MOEA/D, MOEA/D-AWA, RVEA和NSGA-III算法在10个广泛应用的测试问题上进行了实验比较.实验结果表明,提出的算法在大部分问题上,反转世代距离评价指标IGD优于其他算法,收敛速度也快于其他算法.  相似文献   

11.
基于正交设计的多目标演化算法   总被引:16,自引:0,他引:16  
提出一种基于正交设计的多目标演化算法以求解多目标优化问题(MOPs).它的特点在于:(1)用基于正交数组的均匀搜索代替经典EA的随机性搜索,既保证了解分布的均匀性,又保证了收敛的快速性;(2)用统计优化方法繁殖后代,不仅提高了解的精度,而且加快了收敛速度;(3)实验结果表明,对于双目标的MOPs,新算法在解集分布的均匀性、多样性与解精确性及算法收敛速度等方面均优于SPEA;(4)用于求解一个带约束多目标优化工程设计问题,它得到了最好的结果——Pareto最优解,在此之前,此问题的Pareto最优解是未知的.  相似文献   

12.
在多目标进化算法的基础上,提出了一种基于云模型的多目标进化算法(CMOEA).算法设计了一种新的变异算子来自适应地调整变异概率,使得算法具有良好的局部搜索能力.算法采用小生境技术,其半径按X条件云发生器非线性动态地调整以便于保持解的多样性,同时动态计算个体的拥挤距离并采用云模型参数来估计个体的拥挤度,逐个删除种群中超出的非劣解以保持解的分布性.将该算法用于多目标0/1背包问题来测试CMOEA的性能,并与目前最流行且有效的多目标进化算法NSGA-II及SPEA2进行了比较.结果表明,CMOEA具有良好的搜索性能,并能很好地维持种群的多样性,快速收敛到Pareto前沿,所获得的Pareto最优解集具有更好的收敛性与分布性.  相似文献   

13.
一种基于输运理论的多目标演化算法   总被引:2,自引:1,他引:2  
提出了一种根据输运理论中的粒子输运方程、相空间能量定律和熵增法则构造的一种能够准确、高效地求解多目标优化问题的多目标演化算法(MOPEA).由于该算法使用了粒子系统从非平衡达到平衡的理论来定义求解多目标问题的Rank函数和Niche适应值函数,使得种群中的所有个体都有机会参与演化操作,以达到快速、均匀地求出多目标优化问题的Pareto最优解.数据实验显示,利用该算法求解多目标优化问题不仅能够使算法快速地收敛到全局Pareto前沿,同时由于该算法要求所有的粒子都要参与杂交和变异等演化操作,从而避免问题早熟现象的出现,并通过与传统演化算法的性能指标分析比较说明,使用该算法求解多目标优化问题具有明显的优越性.  相似文献   

14.
基于新模型的动态多目标优化进化算法   总被引:1,自引:1,他引:1  
在动态多目标优化中,各目标通常相互冲突,其最优解往往有无穷多个,如何在时间连续发生变化的情况下依然能求出分布均匀且数量多的Pareto最优解供决策者选择十分重要.对动态多目标优化问题连续变化的时间变量区间进行了任意划分,在得到的每个时间子区间上把动态多目标优化问题近似为静态多目标优化问题,进而在每个子区间上定义了种群的静态序值方差和静态密度方差,然后把目标个数任意的动态多目标优化问题转化成一个双目标静态优化问题.在给出的一种能自动检测时间变化的自检算子下,提出一种新的动态多目标优化进化算法,并且证明了算法的收敛性.计算机仿真表明新算法对动态多目标优化问题求解十分有效.  相似文献   

15.
基于生态策略的动态多目标优化算法   总被引:1,自引:0,他引:1  
动态多目标优化问题(dynamic multi-objective optimization problems, DMOP)的目标函数、约束条件或者问题的相关参数随时间变化,是多目标优化领域非常重要的研究难题,传统方法难以很好地追踪其变化的Pareto前沿.针对动态多目标优化问题特点,提出了一种基于生态策略的动态多目标优化算法(dynamic multi-objective optimization algorithm based on ecological strategy, ESDMO).各种群可以采取不同的进化策略应对外部环境变化,捕食种群与被捕食群体间的竞争也促进种群不断提高生存力.受此启发,采用了一种多种群协同进化机制与强化学习策略相结合的协同进化计算模型.该算法定义了一种环境自检算子用于检测环境的变化,不同的种群采取不同的生态策略来应对动态环境变化.经过各种类型的动态多目标优化问题测试,实验结果表明所提出的算法具有更好的解集多样性、均匀性和分布性,验证了该算法对于解决动态多目标优化问题是有效的.  相似文献   

16.
一种快速的基于占优树的多目标进化算法   总被引:7,自引:0,他引:7  
石川  李清勇  史忠植 《软件学报》2007,18(3):505-516
为了解决多目标进化算法中适应值指派(fitness assignment)的耗时问题,提出了一种新颖的适应值指派方法--占优树.占优树保存了个体之间的必要信息,暗含了个体的密度信息,而且显著减少了个体之间的比较.此外,基于占优树的淘汰策略没有花费额外的代价就保存了种群多样性.在此基础上,提出了一种新的基于占优树的多目标进化算法.通过6个测试问题和3个方面的测试标准,新算法在接近真实的最优前沿和保持种群的多样性方面,与SPEA2和NSGA-II性能相当,但速度要比它们快得多.  相似文献   

17.
演化算法是求解多目标优化问题(MOP)重要而有效的方法,而应用演化策略、技巧是改善解性能的重要途径。论文叙述了多目标优化问题的有关概念,结合已有算法中的方法,设计了基于两种交叉操作相互结合的多目标演化算法(MOEAHC),该算法不仅具有较高的计算效率,而且能够保持解的多样性分布。测试结果表明该算法的良好性能。  相似文献   

18.
在多目标优化遗传算法中,将整个种群按目标函数值划分成若干子种群,在各子种群内μ个父代经遗传操作产生λ个后代;然后将各子种群的所有父代和后代个体收集起来进行种群排序适应度共享,选取较好的个体组成下一代种群。相邻的非劣解容易分在同一子种群有利于提高搜索效率;各子种群间的遗传操作可采用并行处理;各子种群的所有
有个体收集起来进行适应度共享有利于维持种群的多样性。最后给出了计算实例。  相似文献   

19.
韩敏  刘闯  邢军 《自动化学报》2014,40(3):431-438
提出一种用于求解多目标优化问题的基于膜系统理论的演化算法. 受膜系统理论的功能和处理化合物方式的启发,设计了求解多目标优化问题的演化操作. 此外,在表层膜中,引入了非支配排序和拥挤距离两种机制改善算法的搜索效率. 采用ZDT(Zitzler-Deb-Thiele)和DTLZ(Deb-Thiele-Laumanns-Zitzler)多目标问题对所提算法进行测试,所提算法求得的候选解既能较好地逼近真实Pareto前沿,又能满足非支配解集多样性的要求. 仿真结果表明,所提方法求解多目标优化问题是可行和有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号