首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retino-tectal system has been used to study developmental aspects of axon growth, synapse formation and the establishment of a precise topographic order as well as degeneration and regeneration of adult retinal ganglion cell (RGC) axons after axonal lesion. This paper reviews some novel findings that provide new insights into the mechanisms of developmental RGC axon growth, pathfinding, and target formation. It also focuses on the cellular and molecular cascades that underlie RGC degeneration following an axonal lesion and on some therapeutic strategies to enhance survival of axotomized RGCs in vivo. In addition, this review deals with problems related to the induction of regeneration after axonal lesion in the adult CNS using the retino-tectal system as model. Different therapeutic approaches to promote RGC regeneration and requirements for specific target formation of regenerating RGCs in vitro and in vivo are discussed.  相似文献   

2.
In the cattle, SCO-spondin was shown to be a brain-secreted glycoprotein specifically expressed in the subcommissural organ (SCO), an ependymal differentiation located in the roof of the Sylvian aqueduct. Furthermore, SCO-spondin makes part of Reissner's fiber (RF), a structure present in the central canal of the spinal cord. Sequencing of overlaping cDNA inserts after successive screening of a cattle SCO cDNA expression library allowed characterization of the complete sequence of this novel protein. Conserved domains were identified including twenty-six thrombospondin type 1 repeats (TSRs), nine low-density lipoprotein receptor LDLr type A domains (LDLRA), two epidermal growth factor EGF-like domains, and homologies to mucins and the von Willebrand factor were found in the amino- and carboxy- termini. In addition, SCO-spondin shows a unique arrangement "in mosaic" of these domains. The putative function of SCO-spondin in neuronal differentiation is discussed regarding these features and homologies with other developmental molecules of the central nervous system exhibiting TSR domains, and involved in axonal guidance.To correlate molecular and functional features of SCO-spondin, we tested the effect of oligopeptides whose sequences include highly conserved regions of the TSRs, LDLRA repeats, and a potent site of attachment to glycosaminoglycan, on cortical and spinal cord neurons in primary cell cultures. Peptides corresponding to SCO-spondin TSRs markedly increased adhesivity and neuritic outgrowth of cortical neurons and induced disaggregation of spinal cord neurons. Thus, SCO-spondin is a candidate to interfere with neuronal development and/or axonal guidance during ontogenesis of the central nervous system in modulating side-to-side and side-to-substratum interactions, and in promoting neuritic outgrowth. RF proper has a wide range of activity on neuronal differentiation, including survival, aggregation, and disaggregation effects and neurite extension of cortical and spinal cord neurones "in vitro." Thus, the SCO/RF complex may interact with developmental processes of the central nervous system including the posterior commissure and spinal cord differentiation.  相似文献   

3.
The regeneration of axons after a spinal cord injury or disease is attracting a significant amount of interest among researchers. Being able to assess these axons in terms of morphology, length and origin is essential to our understanding of the regeneration process. Recently, two specific axon tracers have gained much recognition; biotinylated dextran amine (BDA) 10 kDa as an anterograde tracer and cholera toxin‐B as a retrograde tracer. However, there are still several complexities when using these tracers, including the volume that should be administered and the best administration site so that a significant amount of axons are labeled in the area of interest. In this article, we describe some simple procedures for injecting the tracers and detecting them. We also quantified the number of axons at different locations of the spinal cord. Our results show axons labeled from motor cortex injections traveled down to the lumbosacral spinal cord in 2 weeks, while BDA injections into the lateral vestibular nucleus and reticular formation took 3 weeks to label axons in the lumbosacral spinal cord. Moreover, this protocol outlines some basic procedures that could be used in any laboratory and gives insight into the number of axons labeled and how procedures could be tailored to meet specific researcher's needs. Microsc. Res. Tech. 76:1240–1249, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
It was known that Spinal cord injury (SCI) leads to neuronal cell death, axonal damage and demyelination, and often results in severe functional loss. Noninvasive imaging of axonal integrity may hold great importance in clinic. This study evaluated the role of phase imaging in detection of axonal integrity of cranial corticospinal tract after spinal cord injury. Quantitative MR phase imaging and diffusion tensor imaging were performed on a group of rats prior to and after spinal cord injury at 9.4 T in this study. The phase contrast decreased mainly in contralateral white matter containing the corticospinal tract (CST), i.e., pyramid by 46%, two weeks postinjury compared to preinjury levels. Diffusion measurements further showed fractional anisotropy (FA) increased and radial diffusivity (λ⊥) decreased significantly, and axial diffusivity (λ∥) remained unchanged in these regions confirmed intact fiber tracts two weeks after injury, precluding the possibility of axonal damage and potential contribution to the shifted susceptibility. It was concluded that phase imaging is a potential endogenous biomarker for brain axonal integrity after spinal cord injury. This novel tool could potentially be applied to diagnose brain pathologies in patients who have spinal cord injury.  相似文献   

5.
Lipophilic fluorescent dyes have been used to trace neuronal connections because of their ability to diffuse laterally within nerve cell membranes. Given the hundreds to thousands of connections that a typical neuron makes with its neighbours, a diffusion‐matched set of spectrally distinct dyes is desirable. To extend a set of these dyes to obtain six independent labels, we have characterized the properties of novel violet and near‐infrared candidates. By combining two‐photon and confocal microscopy all of these candidates can be imaged using a single Titanium Sapphire laser. Here we present measurements of the two‐photon action cross‐sections and diffusion properties of the dyes, using either the relative diffusion distance or fluorescence recovery after photobleaching techniques, and demonstrate six‐colour neuronal tracing within the spinal cord and brain tissue.  相似文献   

6.
In order to test the effectiveness of a new advanced time-lapse microscopy imaging and image processing and analysis system, and to do quantitative and qualitative temporal analyses of in vitro peripheral nerve regeneration, long-term time-lapse imaging of cultures of mouse dorsal root ganglia (DRGs) was performed. DRGs were placed in a Petri dish, covered with collagen gel, their attached peripheral nerves were cut in the middle, creating a gap, and the dish was filled with culture medium. Six preparations were kept on the time-lapse imaging system, which provides a suitable incubation environment and enables to capture images from multiple coordinates at x,y,z axes at desired time intervals for 13 days. In general, the time-lapse imaging system proved quite stable and efficient, although some improvements are certainly required. Two main components of peripheral nerve regeneration, outgrowth of axons and activities of resident cells, were examined. Axons started to grow during the first hour of incubation with a 16.5 microm/h rate and showed the slowest rates (0.7 microm/h) on days 8 and 9, after which they resumed higher speeds again. The first cell came out of the proximal end of the cut nerve on the second day and it was a Schwann cell (SC), which was the prominent cell type in the preparations throughout the experiment. SCs were higher in number (83.15% of all cells) but slower in migration (3.4 vs. 7.3 microm/h, P < 0.001) than other cells. Other observed characteristics of axonal outgrowth and cellular activity and interactions between axons and the cells are discussed.  相似文献   

7.
Locusts are attractive model preparations for cellular investigations of neurodevelopment. In this study, we investigate the immunocytochemical localization of histamine in the developing ventral nerve cord of two locust species, Schistocerca gregaria and Locusta migratoria. Histamine is the fast neurotransmitter of photoreceptor neurons in the compound eye of insects, but it is also synthesized in interneurons of the central nervous system. In the locust ventral nerve cord, the pattern of histamine-immunoreactive neurons follows a relatively simple bauplan. The histaminergic system comprises a set of single, ascending projection neurons that are segmentally arranged in almost every neuromere. The neurons send out their axons anteriorly, forming branches and varicosities throughout the adjacent ganglia. In the suboesophageal ganglion, the cell bodies lie in a posteriolateral position. The prothoracic ganglion lacks histaminergic neurons. In the posterior ganglia of the ventral nerve cord, the somata of the histaminergic neurons are ventromedially positioned. Histamine-immunoreactivity starts around 50% of embryonic development in interneurons of the brain. Subsequently, the neurons of the more posterior ganglia of the ventral nerve cord become immunoreactive. From 60% embryonic development, the pattern of soma staining in the nerve cord appears mature. Around 65% of embryonic development, the photoreceptor cells show histamine-immunoreactivity. The histaminergic innervation of the neuropile develops from the central branches toward the periphery of the ganglia and is completed right before hatching.  相似文献   

8.
A procedure is described for making leucocyte preparations from blood samples fixed ex vivo. Briefly, blood is treated with buffered formaldehyde and the erythrocytes and platelets removed subsequently by lysis and differential centrifugation. The fixed leucocyte preparations can then be processed or fixed further for various types of microscopy as required. In stained preparations examined by light microscopy, the different leucocytes, i.e. lymphocytes, polymorphonuclear leucocytes (PMN) and monocytes, can readily be identified by their characteristic nuclear morphology, and polarized PMN can easily be recognized by their non-spherical shape. Experiments with chemotaxins in vitro indicated that the procedure could be used to determine whether polarized PMN circulate in the blood of normal individuals and patients with inflammatory disease. A study of the blood from eleven normal subjects showed that 84.0 ± 10.8% (mean ± 2 SEM) of circulating PMN were spherical, while the majority of the remainder (14.3 ± 10.5%) were only ‘slightly’ polarized.  相似文献   

9.
建立了超高效液相色谱/质谱联用(UPLC-MS)技术检测鸡和鱼类饲料中7种水溶性着色剂的分析方法。样品提取后通过固相萃取小柱去除基质干扰。在waters BEH C18柱上,0.2%甲酸,10mmol/L甲酸铵的水溶液和乙腈为流动相梯度洗脱,采用选择离子(SIM)模式进行定量检测。待测组分在鱼饲料中的回收率为84.0%~109.2%(RSD 1.1%~7.6%);在鸡饲料中回收率为81.9%~108.0%(RSD 0.4%~9.1%)。该方法灵敏度高,操作方便,适合于饲料中水溶性工业着色剂的快速检测。  相似文献   

10.
In a computer simulation, growth of a capillary network is driven by a stochastic process on a planar hexagonal grid. Starting at a point source, the probabilities for the formation of new capillary elements depend on local biophysical knowledge. This knowledge is mainly derived from the flow theorem of Hagen–Poiseuille and the diameter exponent Δ. The hexagonal grid is visualized as being supported by a cylinder or a sphere. An arterial tree results from the adaptive diameter augmentation, and is considered to have limited fractal properties. The dimension of its border, and the time course of growth and of blood pressure are compared with biological data from the chorioallantoic membrane (CAM) of incubated chicken eggs. The model is discussed in view of mechanosensitivity and cell–matrix interactions of endothelial cells, and CAM haemodynamics.  相似文献   

11.
In vitro methods have been used to study several aspects of development of olfactory epithelium. In this paper, the value of growing olfactory tissue in explant cultures is reviewed and some experiments are reported on the identification of lectin receptors on olfactory axons by the use of lectin-gold complexes. Both concanavalin A-gold (con A-gold) and wheat germ agglutinin-gold consistently decorated olfactory axons in explant cultures. Con A-gold also bound to the tips of growth cone filopodia, suggesting the glycoconjugate molecules containing alpha-methyl-pyranoside are important in adherence of growth cones to their substrate. The wide range in density of lectin-gold particles suggested that axons, and the sensory cells from which they arise, are not a uniform population, i.e., they have different molecular fingerprints. This was supported by the observation that soybean agglutinin-gold stained some axons very well, but others remained unstained. Peanut agglutinin did not bind to any axons.  相似文献   

12.
Number of molecules and Brightness (N&B) has been proposed for measuring the molecular brightness and number of fluorophores in time‐sequence of images, in live cells. If the fluorescently tagged‐proteins are mobile in the illumination volume, the stoichiometry of their oligomers can be derived from the increase of the brightness of the fluorescent dyes due to clustering. We examine aspects concerning extra‐fluctuation effects induced by cell shifts and photobleaching, which yield large overestimates of the clusters size and sub‐unit counts. We develop an offline corrective approach consisting in frame re‐alignment and boxcar filtering for recovering precision of the analysis. Using simulations we derive general criteria for approaching this analysis, and assess the application limits of the corrective procedure. We tested the approach in extreme experimental conditions (few pixels, large extra‐variance perturbations), in which we analyzed the minimal increases of brightness as that expected between a monomeric and dimeric GPI‐mEGFP constructs. We show how most of the perturbing effects can be abolished, and obtain the correct the brightness of GPI‐mEGFP monomers and dimers. Microsc. Res. Tech. 76:1135–1146, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
The ultrastructural localization of putative excitatory (glutamate, aspartate) and inhibitory (taurine, glycine) amino acid neurotransmitters is described in several selected rat brain regions. In general, axon terminal profiles immunoreactive for excitatory amino acids formed asymmetric synapses with non-immunoreactive small diameter dendritic profiles or dendritic spines. In the cerebellum, both mossy fiber terminals and parallel fiber terminals were immunoreactive for glutamate and aspartate. In the hippocampus, mossy fiber terminals within the stratum lucidum of the CA3 region were immunoreactive for glutamate. Localization of glutamate and aspartate to cerebellar parallel and mossy fibers, as well as the identification of glutamate in hippocampal mossy fibers, is consistent with the excitatory nature of these fibers as described in previous physiological studies. Glutamate-like immunoreactive terminals were also identified in subnucleus caudalis of the spinal trigeminal nucleus and in the dorsal horn of the spinal cord. Immunoreactive axon terminals for two putative inhibitory neurotransmitters, glycine and taurine, displayed a greater number of morphological variations in synaptic structure. In the cerebellum, taurine-like immunoreactivity was present in both basket cell axon terminals which formed symmetric synapses with Purkinje cell neurons, and in a few mossy fiber terminals which formed asymmetric synapses with dendritic spines. In the area dentata of the hippocampus, taurine-like immunoreactive profiles formed asymmetric synapses with dendritic elements. Glycine-like immunoreactive terminals formed symmetric synapses with cell perikarya in both the ventral horn of the spinal cord and in the cochlear nuclei, and on axon terminals in the spinal trigeminal and cochlear nuclei. In contrast, some glycine-like immunoreactive terminals formed asymmetric synapses with distal dendritic profiles in the spinal cord and spinal trigeminal nucleus. The localization of taurine to cerebellar basket cell axons and glycine to axon terminals that synapse on ventral horn motor neuron perikarya is consistent with the hypothesis that these amino acids are functioning as inhibitory neurotransmitters at these synapses. Taurine localization to cerebellar mossy fibers and to fibers in the molecular layer of the dentate gyrus may be more consistent with a proposed neuromodulator role of taurine.  相似文献   

14.
We present a novel technique of far-field localization nanoscopy combining spectral precision distance microscopy with widely used fluorochromes like the Green Fluorescent Protein (GFP) derivatives eGFP, EmGFP, Yellow Fluorescent Protein (YFP) and eYFP, synthetic dyes like Alexa 488 and Alexa 568, as well as fluoresceine derivates. Spectral precision distance microscopy allows the surpassing of conventional resolution limits in fluorescence far-field microscopy by precise object localization after the optical isolation of single signals in time. Based on the principles of this technique, our novel nanoscopic method was realized for laser optical precision localization and image reconstruction with highly enhanced optical resolution in intact cells. This allows for spatial assignment of individual fluorescent molecules with nanometre precision. The technique is based on excitation intensity dependent reversible photobleaching of the molecules used combined with fast time sequential imaging under appropriate focusing conditions. A meaningful advantage of the technique is the simple applicability as a universal tool for imaging and investigations to the major part of already available preparations according to standard protocols. Using the above mentioned fluorophores, the positions of single molecules within cellular structures were determined by visible light with an estimated localization precision down to 3 nm; hence distances in the range of 10–30 nm were resolved between individual fluorescent molecules allowing to apply different quantitative structure analysis tools.  相似文献   

15.
Little is known about the spinal cords of phylogenetically ancient actinopterygeans. The spinal cords of the chondrostean Acipenser schrenckii (Amur sturgeon), holostean Lepisosteus oculatus (spotted gar), and teleost Carassius auratus (goldfish) were, therefore, analyzed by immunohistochemistry, electron microscopy and two-dimensional gel electrophoresis. Morphology showed numerous similarities between sturgeons and gars. In both, a dorsal column between the two dorsal horns was lacking, giving the grey matter an inverted Y-shape. In goldfish, a small dorsal column was seen, the grey matter occupied a larger area, neuronal density was much higher, and a ventral commissure was apparent, which was absent in sturgeons and gars. In the white matter of sturgeons and gars, small caliber axons predominated, whereas larger axons were frequent in goldfish. Choline acetyltransferase immunoreactive neurons were prevalent in the ventral horns of all three fish, mainly in motoneurons, but stained fibers were only found in sturgeons and gars. gamma-aminobutyric acid positive cells were seen in both the ventral and the dorsal horns of all three fish. Distribution of serotonin (5-HT) and tyrosine hydroxylase (TH) immunoreaction was similar in sturgeons and gars, being located in both the ventral and the dorsal horns. In goldfish, 5-HT label was confined to the ventral horn and TH label was mainly observed in a cell group located ventromedially. Two-dimensional gel electrophoresis showed a gradual increase in protein number from sturgeons to gars to goldfish. In conclusion, the spinal cords of sturgeons and gars share many morphological and chemical features, distinguishing them from the goldfish spinal cord.  相似文献   

16.
M K Dutt 《Microscopica acta》1982,85(4):381-386
This paper presents informations as to the ability of aqueous solutions of two basic dyes, such as Dahlia and Victoria blue, belonging to aminotriarylmethane group for the staining of DNA-aldehyde molecules as well as DNA-phosphate groups. It has been found that sections of rat tissues stained with aqueous solutions of these dyes after acid hydrolysis followed by drying between folds of filter paper and treatment in n-butanol for a minute and then by a very brief treatment in a mixture consisting of equal parts of n-butanol and absolute ethanol reveal well-stained nuclei. Tissue sections after acid hydrolysis when stained with aqueous solutions of these dyes and then treated with SO2 water do not reveal any colouration of the nuclei. Since both the dyes are without any primary amino group in their molecules, it has been concluded that the imino group of Dahlia and the tertiary amino group of Victoria blue with cold concentrated phosphoric acid and then stained with any of these dyes also exhibit well-stained nuclei. The absorption spectra of nuclei stained with these dyes for DNA-aldehyde molecules as well as DNA-phosphate groups reveal positions of the peaks of maximum absorption at the same wavelength, which, however, are different in the case of nuclei stained with the two dyes. The implications of these findings have been discussed.  相似文献   

17.
The anterior midline of the brain, also known as the pars intercerebralis, contains the largest collection of neurosecretory cells in the central nervous system of the grasshopper. In this study, we use immunocytochemical, intracellular staining, and histological methods to establish the ontogenies of the various cell types in the brain midline, and show how these cells contribute to the pars intercerebralis of the adult brain. We show that the adult pars intercerebralis develops from three distinct embryonic cell groups: (1) the median neurosecretory cells, which derive from a subset of neuroblasts in the protocerebral hemispheres, and which project axons to the corpora cardiaca; (2) the paired primary commissure pioneers, which derive directly from the mesectoderm of the dorsal median domain and whose axons project to the ventral nerve cord via the midline tract; and (3) the six progeny of the median precursor in the dorsal median domain, which share a common axonal projection with the primary commissure pioneers. Since the adult pars intercerebralis is a fusion product of these independent cellular components, it can only be understood in terms of its origins in the embryonic brain. When the expression pattern of the TERM-1 antigen is compared in subsets of median neurosecretory cells in a wide range of insect orders, the results suggests a common organizational Bauplan for the pars intercerebralis. This hypothesis is supported by the identification of putative homologs of the grasshopper primary commissure pioneers in all these insects.  相似文献   

18.
This paper presents a very simple and reliable procedure for the staining of animal chromosomes employing dyes, such as pyronin G, acridine red, rhodamine B, rhodamine 3GO, belonging to aminoxanthene group and brilliant cresyl blue and methylene violet 3RD, belonging to quinone-imine group. The procedure has been tried on sections of the grasshopper and mouse testes fixed in Dutt's modification of Nawaschin mixture. The method is to deparaffinise sections and then to stain with aqueous solution of these dyes for 2--3 minutes, rinsed with water and dehydrated through grades of ethanol, keeping for 15--30 seconds in each grade with several dips. Preparations are then cleared in xylene and mounted. Stained preparations following this procedure revealed excellent colouration of the chromosomes at all the various stages of mitosis and meiosis, particularly in the case of the grasshopper. Mouse chromosomes stained with these dyes following the same method revealed perfect colouration of the fully condensed chromosomes at all stages of mitosis and meiosis but not of the very early stages, except the sex chromosome. Moreover, grasshopper testis sections when treated with cold concentrated phosphoric acid for varying time-periods and then stained with these dyes also revealed excellent colouration of the chromosomes. The implications of these findings have been discussed.  相似文献   

19.
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging.  相似文献   

20.
X-ray microscopy (XRM) is the only microscopy technique that can provide high-resolution (30 nm) imaging of biological specimens without the need to fix, stain or section them. We aim to determine the effect, if any, of glutaraldehyde fixation on algae cells from the XRM perspective and thus provide beneficial information for both X-ray and electron microscopists on artefacts induced by glutaraldehyde fixation. Three species of microalgae, Microcystis aeruginosa, Anabaena spiroides and Chlorella vulgaris, were used in this study. XRM images were obtained from unfixed and glutaraldehyde-fixed cells and cell diameter and percentage X-ray absorbency were measured. The mean diameter of cells from fixed preparations was smaller than from unfixed preparations; the mean diameter of M. aeruginosa cells was significantly reduced from 3.92 µm in unfixed cells to 3.43 µm in fixed cells (P < 0.05); in C. vulgaris the diameter of cells was also significantly reduced from 3.50 µm in unfixed to 2.98 µm in fixed samples (P < 0.05); whereas there was no significant reduction in the diameter of A. spiroides cells (4.04–3.90 µm). The protein crosslinking mechanism of glutaraldehyde probably generated free water molecules, which play an important role in radiation damage induced by X-rays. This was seen as mass loss and cell shrinkage, which in the present study occurred more frequently in fixed cells than in unfixed cells. In addition, we demonstrated that the uptake of glutaraldehyde by cells makes all protein constituents in the cell organize into a closely packed configuration, thus causing a rise in the percentage of X-ray absorbency. In fixed cells, this rise was approximately by a factor of two compared with unfixed samples in which protein constituents inside the cell are arranged in their native form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号