共查询到16条相似文献,搜索用时 62 毫秒
1.
分析了神经网络集成泛化误差、个体神经网络泛化误差、个体神经网络差异度之间的关系,提出了一种个体神经网络主动学习方法.个体神经网络同时交互训练,既满足了个体神经网络的精度要求,又满足了个体神经网络的差异性要求.另外,给出了一种个体神经网络选择性集成方法,对个体神经网络加入偏置量,增加了个体神经网络的可选数量,降低了神经网络集成的泛化误差.理论分析和实验结果表明,使用这种个体神经网络训练方法、个体神经网络选择性集成方法能够构建有效的神经网络集成系统. 相似文献
2.
提出一种改进的选择神经网络集成方法,首先构造一批单个神经网络个体,分别利用Bootstrap算法产生若干个训练集并行进行训练;然后采用聚类算法计算训练好的个体网络之间的差异度和个体网络在验证集的预测精度;最后根据个体精度和个体差异度选择合适的个体网络加入集成.实验结果验证,该集成方法能较好地提高集成的预测精度和泛化能力. 相似文献
3.
4.
提出一种蜂群神经网络集成方法,与一般的神经网络集成方法不同的是:(1)集成个体的生成首先利用蜂群算法优化三层BP神经网络的结构和连接权,并以优化后的网络结构和连接权作为新的神经网络结构和初始连接权,再进行新一轮BP神经网络训练后生成;(2)为提高集成个体间的差异度,首先对个体进行分类,其次利用ABC算法对每一类个体进行最优组合搜索,选取相关系数最低的一个组合的均值作为该类的代表,最后对不同类别的代表作平均集成.在西太平洋热带气旋强度的预测试验中,所提出的蜂群神经网络集成方法的泛化能力不仅明显优于单个神经网络,也优于Bagging和AdaBoost这两种集成方法.是一种具有较高应用价值的神经网络集成预测方法. 相似文献
5.
6.
7.
神经网络集成的设计与应用 总被引:1,自引:0,他引:1
传统的神经网络一般采用个体网络,其应用效果很大程度上取决于使用者的经验,且网络的泛化能力不强.一种改进的神经网络集成方法,为传统神经网络存在的问题提供了一个简易的解决方案.由理论分析和实验结果可以得出结论,神经网络集成方法比传统的个体网络方法的效果更好. 相似文献
8.
神经网络集成通过训练多个神经网络并将其结论进行适当的合成,可以显著地提高学习系统的泛化能力.然而,设计一个好的神经网络集成必须在个体准确性与彼此差异性之间取得一个平衡.本文提出了一种改进的神经网络集成构造方法--基于噪声传播的神经网络集成算法(NSENN). 相似文献
9.
10.
提出了一种选择性神经网络集成构造方法,在训练出个体神经网络之后,使用遗传算法部分网络来组成神经网络集成。理论分析和实验结果表明,与传统的使用所有体网络的方法相比,该方法能够取得更好的效果。 相似文献
11.
基于输出误差与偏导数误差信息融合的神经网络训练 总被引:2,自引:0,他引:2
张德贤 《计算机工程与应用》2002,38(24):55-57
文章首先提出了表示前向神经网的泛化能力的一种度量,分析了提高网络泛化能力的主要途径,进而提出了基于网络输出误差与输出对输入偏导数误差信息融合的网络训练策略,给出了两者信息融合的有效方法和相应网络训练算法。具体应用结果表明所提出算法可显著提高网络的泛化能力。 相似文献
12.
神经网络集成方法具有比单个神经网络更强的泛化能力,却因为其黑箱性而难以理解;决策树算法因为分类结果显示为树型结构而具有良好的可理解性,泛化能力却比不上神经网络集成。该文将这两种算法相结合,提出一种决策树的构造算法:使用神经网络集成来预处理训练样本,使用C4.5算法处理预处理后的样本并生成决策树。该文在UCI数据上比较了神经网络集成方法、决策树C4.5算法和该文算法,实验表明:该算法具有神经网络集成方法的强泛化能力的优点,其泛化能力明显优于C4.5算法;该算法的最终结果昆示为决策树,显然具有良好的可理解性。 相似文献
13.
14.
科学与工程领域经常使用数值积分,为此提出了一种求解数值积分的新方法.其主要思想是通过训练神经网络权值αn并用傅立叶级数N∑n=0αncos(nx)来近似未知函数f(x),然后用N∑n=0 αn∫abcos(nx)dx来近似积分∫abf(x)dx.提出并证明了神经网络算法的收敛性定理和数值积分的求解定理.数值积分算例验证了本文算法的有效性.研究结果表明,本文提出的数值积分方法有高的计算精度,在工程实际中有较大的应用价值. 相似文献
15.
灰色神经网络在股票价格预测中的应用 总被引:2,自引:0,他引:2
研究股票价格预测问题,股票价格具非线性和不确定性变化规律。传统单一模型只能反映股票价格部分信息,预测精度不高。为了提高股票价格预测精度,在分析股票价格变化特征基础上,提出一种灰色神经网络的股票价格预测方法。首先采用GM(1,1)模型对股票价格进行预测,捕捉其线性、灰色变化规律,然后采用BP神经网络对GM(1,1)预测残差进行建模预测,捕捉其非线性和不确定性变化规律,最后两者结果相加得到股票价格最终预测结果。将灰色神经网络用于浦发银行(60000)股票收盘价为例预测,结果表明,相于传统预测模型,灰色神经网络提高了股票价格预测精度,更能全面挖掘股票价格变化规律,在股票价格预测中具有广泛的应用前景。 相似文献
16.
基于广义回归网络的动态权重回归型神经网络集成方法研究 总被引:2,自引:0,他引:2
神经网络集成技术能有效地提高神经网络的预测精度和泛化能力,已成为机器学习和神经计算领域的一个研究热点。针对回归分析问题提出了一种动态确定结果合成权重的神经网络集成构造方法,在训练出个体神经网络之后,根据各个体网络在输入空间上对训练样本的预测误差,应用广义回归网络来动态地确定各个体网络在特定输入空间上的权重。实验结果表明,与传统的简单平均和加权平均方法相比,本集成方法能取得更好的预测精度。 相似文献