首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We evaluate the performance of a relatively efficient cyclone operating under conditions analogous to a generic pressurized circulating fluidized bed at high solid loading. We find that pressure losses across the cyclone scale with the kinetic energy density of the inlet gas and are independent of the particle Stokes number and the Reynolds number based on cyclone diameter.The pressure data are well captured by the model of Muschelknautz and Greif (1997), who predict that the corresponding losses decrease with increasing solid loading. We confirm that the overall cyclone solid capture efficiency and the efficiency by size depend on the particle Stokes number and loading. We find that the effects of these two numbers are complex and not well captured by existing models, which, unlike experiments, assume a uniform distribution of solids at the inlet.  相似文献   

2.
A prototype multi-stage cyclone system consisting of an impaction inlet and five axial flow cyclone stages has been developed to classify simulants of Lunar and Martian dusts for various research and development needs of NASA's space exploration missions. Individual axial flow cyclone stages can be either independently operated with an inline connection to other particle devices or cascaded together for particle separation and collection. The impaction inlet and first three cyclone stages were designed to operate at the flowrate of 50 lpm under pressure close to ambient. The last two cyclone stages were designed to operate under low pressure conditions to separate particles with diameters less than 200 nm. Due to the limited vacuum capacity of the pump used, the flowrates of last two cyclone stages were restricted to 11.0 and 1.0 lpm when operating the assembled prototype. The impaction inlet and each cyclone stage of the prototype were experimentally calibrated, and the cutoff particle sizes were 11.3 μm, 0.97 μm, 550 nm, 255 nm, 109 nm, and 40 nm.

It was further found that in general the flow Reynolds (Re) and particle Stokes numbers (StK) were critical parameters to characterize the performance of the axial flow cyclone stages, and the relationship between Re and the dimensionless cutoff size (√StK was established. In addition, the collection efficiency curves are shifted to a smaller size range with a decrease of the cyclone pressure. However, using √StK as the abscissa and keeping the same Re, the particle collection curves at different pressures can be merged into one. This study also found that the upstream pressure should be used to calculate StK instead of the average of upstream and downstream pressures of the test cyclone stage.  相似文献   

3.
In particular the collection efficiencies were measured as a function of flow rate, cyclone dimensions and particle size. For this purpose a fast, accurate and problem adapted measuring technique has been used, which enables the determination of grade efficiency curves by measuring the size distributions in the cyclone up- and downstream with optical particle counters. The extended experimental data from this parameter study were analysed by the methods of dimensional analysis and theory of models. An evaluation of all measuring results for two cyclone designs has been resulted in an empirical, nondimensional correlation of the collection characteristic, a dimensionless grade efficiency curve. Deviating from geometric similarity this correlation includes a variation of cyclone outlet diameter. Grade efficiencies of the cyclones are a definite function of the dimensionless numbers Stokes and Reynolds number and of the dimensionless cyclone outlet diameter. Analysis of own and published data has shown that this experimental correlation includes the influence of the temperature and that cyclone body diameter do not influence efficiency. The influence of cyclone height on flow behaviour and collection characteristic could be quantified as well. The range, in which prediction of collection efficiencies is possible, is marked in a state diagram Reynolds number versus dimensionless cyclone height.  相似文献   

4.
天然气净化用多管旋风分离器的分离性能   总被引:3,自引:0,他引:3  
为了系统评价天然气净化用多管旋风分离器的分离性能,在线测量了入口气速6~24 m/s、入口颗粒浓度30~2000 mg/m3范围内多管旋风分离器的分离效率和分级效率. 结果表明,多管旋风分离器的分离效率和分级效率都随入口气速和入口颗粒浓度增大而提高. 与单管旋风分离器相比,在相同实验条件下,多管旋风分离器的分离效率下降2%~15%;单管旋风分离器基本能除净粒径大于10 mm的颗粒,而多管旋风分离器只能去除15 mm以上的颗粒. 多管旋风分离器的压降主要是内部单管旋风分离器的压降,占整个压降的80%~90%.  相似文献   

5.
多效旋风分离器性能的实验研究   总被引:1,自引:1,他引:0  
多效旋风分离器通过采用2级螺旋管预分离含尘气体、螺旋形顶盖板导流、筒体中心稳流锥稳流和吸气回流系统防止粉尘返混等措施,解决了在旋风流场中分离微米及亚微米级颗粒的难题。文中通过实验研究了直径为0.25 m的多效旋风分离器的压降、分离效率和进口风速的关系,实验物料粒径范围为0.1—23μm,平均粒径为7.59μm。结果表明:在10—14 m/s入口风速时,对0.1—3μm颗粒的分离效率大于90%,对大于5μm颗粒的分离效率接近100%,压降在500—1 000 Pa。风速大于16 m/s时,对0.1—2μm颗粒的分离效率大于75%。  相似文献   

6.
An Eulerian‐Eulerian three‐dimensional CFD model was developed to study the effect of different inlet designs on deoiling hydrocyclone separation efficiency. Reynolds averaged Navier Stokes and continuity equations were applied to solve steady turbulent flow through the cyclone with the Reynolds stress model. In addition, the modified drag correlation for liquid‐liquid emulsion with respect to the Reynolds number range and viscosity ratio of two phases was used and the simulation results were compared with those predicted by the Schiller‐Naumann correlation. Pressure profile, tangential and axial velocities and separation efficiency of the deoiling hydrocyclone were calculated for four different inlet designs and compared with the standard design. The simulation results for the standard design demonstrate an acceptable agreement with reported experimental data. The results show that all new four inlet designs offer higher efficiencies compared to the standard design. The difference between the efficiency of the LLHC, of the new inlets and the standard design can be improved by increasing the inlet velocity. Furthermore, the simulations show that the separation efficiency can be improved by about 10 % when using a helical form of inlet.  相似文献   

7.
Velocity data from a previous study were nondimensionalized and used in conjunction with a computer program which solves the equations for particle trajectory to predict the collection efficiency for the cyclone. Results for the prediction of cutpoint at the same Reynolds number as that for which the velocities were measured, both for a large cyclone of 88.9 mm diameter and another geometrically similar at one half the scale, are excellent. The model predicts cutpoints of 10 μm and 5.1 μm for the large and small cyclone, respectively, while the actual cutpoints determined from aerosol tests were 9.9 μm and 5.2 μ m. The efficiency curve generated by the model was steeper (geometric standard deviation of 1.1) than the efficiency curve determined through the aerosol testing (geometric standard deviation of 1.4). A simplification of the Dirgo and Leith equation fitting Barth's design curve is suggested which provides a significantly better fit of the aerosol data (geometric standard deviation of 1.3). At 1.5N R Q, where N R Q = (4pg)/(πμD c), the error in prediction of the cutpoint in the large cyclone is less than 8% while at 04N R Q the error is less than 2%. Although results are good over a limited range of Reynolds numbers, the model is strictly applicable only for flows which are dynamically similar to those studied here.  相似文献   

8.
By using dimensional analysis, the Stokes number based on the cut diameter was predicted to be a function of the Reynolds number and the geometry of the cyclone. Data from various investigators were plotted versus the Reynolds number. At lower Reynolds numbers, the Stokes number decreased with increasing Reynolds number. At higher values of the Reynolds number, the data are inconclusive. For some data sets, the Stokes number approached a constant value, whereas, for other sets, the Stokes number decreased with increasing Reynolds number. The dimensionless data from this study can be used to estimate the cut diameter of geometrically similar cyclones and to make preliminary estimates for a cyclone of a different design.  相似文献   

9.
The continuous flow inside cyclone separator is usually simulated by solving the Reynolds averaged Navier–Stokes equations in Eulerian reference frame whereas the dispersed phase is modeled using Lagrangian approach. Although these methods have had a remarkable success, more advanced ideas are needed to model particulate phase in cyclones, especially the non-spherical shaped particles. Numerical simulation is verified with experimental results for the gas-solid flow in a cyclone separator. Reynolds Averaged Navier–Stokes equations (RANS) employing the RNG-based kε turbulence model are used to simulate the gas phase. 3-D particle tracking procedure is used for the solid phase. Three different equations for the drag coefficient are utilized in the numerical modeling to acquire more understanding of the behavior of non-spherical particles in cyclones. Computations resulted in the difference of pressure between the inlet and exit of the cyclone, and results are compared with experimental data. Experiments included measuring the separation efficiency of different shapes and sizes of particles. The results indicate that the CFD simulation can effectively reveal the pressure drop behavior as well as separation efficiency of gas-non-spherical particle flow in cyclone.  相似文献   

10.
An analytical model was developed to predict the fractional efficiency of a uniflow cyclone with a tangential inlet. The analysis showed that the separation efficiency is a function of particle Stokes number and the geometry of the cyclone body. Six sets of experiments were conducted under different conditions to validate the model. The experimental fractional efficiencies were determined by the total mass efficiency and the corresponding size distributions measured by using an offline particle sizer. Overall the experiments agreed with the modeling results well. Both model and experiments showed that the efficiency of this cyclone reached 99.5% and above when Stk > 1.0.  相似文献   

11.
任欢  赵兵涛  王东燊  张芸 《化工进展》2020,39(3):882-889
为探究颗粒负荷对小型旋风器内气固两相流动的影响,基于雷诺应力模型(RSM)和欧拉-欧拉方法的混合流模型(Mixture)进行气体-颗粒、颗粒-颗粒的相间耦合计算。采用粒径为0.5~5μm的颗粒组在40L/min、60L/min和80L/min的入口流量下模拟0~3kg/m3的5种不同颗粒浓度工况,通过对比旋风器内纯气相流场和颗粒负荷流场的不同,研究了颗粒的存在对流场的影响;探究了入口流量和浓度变化对旋风器内分离效率和压降特性的影响。基于模型有效性验证的数值模拟结果表明:较高颗粒浓度负荷使旋风器内的气相流场发生显著变化。随着入口流量的增大,旋风器的分离效率先增大后减小,压降呈非线性增大。随着颗粒浓度的增大,旋风器的分离效率逐渐增大,压降先减小后增大。  相似文献   

12.
Experimental results are presented for a study of gas and particle flows in a 102 mm diameter conventional cyclone operated at temperatures between 300 and 2000 K. Inlet gas velocities ranged from 3 to 42 m/s. Particle deposition patterns and the measurements of local pressures were used to determine the flow patterns and velocity profiles within the cyclone. A “Reynolds Number” has been defined based on the mean inlet velocity and the hydraulic diameter of the annulus between the cyclone wall and the gas outlet duct. An empirical equation was derived to correlate the ratio of the wall tangential velocity to the mean inlet velocity with this Reynolds Number.  相似文献   

13.
This paper presents a numerical study of the gas-solid flow in square cyclone separators with three types of inlet configuration. Three-dimensional Reynolds Stress Model (RSM) was used to simulate the turbulent flow of gas phase and a Lagrangian equation was used to simulate the particle motion. The resulting velocity, separation efficiency and pressure drops were verified by comparison with measured data. The effect of inlet configurations on the turbulent dynamics in the cyclone and the separation efficiency and pressure drop was analyzed. Results showed that inlet configurations influenced the turbulent dynamics in the cyclone and led to different pressure drop and separation efficiency. The separator with double declining inlets (DDI) had the minimum pressure drop and similar efficiency to the separator with double normal inlets (DNI). The separator with single normal inlet (SNI) had the best separation efficiency and the maximum pressure drop. When a baffle was installed in the inlet of separator SNI, the pressure drop increased by about 191% and 34% for the separator with a straight (SNI-1) and curved (SNI-2) baffle respectively on the basis of the pressure drop of separator SNI. The cut and critical diameter of particles were 2 μm and 14 μm for separator SNI-1 and 4 μm and 14 μm for separator SNI-2, while they were 8 μm and 30 μm for separator SNI at the same inlet conditions.  相似文献   

14.
微纳米颗粒受自然对流影响运动沉积特性   总被引:3,自引:1,他引:2  
李琪  戴传山 《化工学报》2012,63(3):800-805
引言固体颗粒在流体内的运动及沉积是大气环境、河床、水文地质等自然界中普遍存在的现象,也在煤燃烧、化工制药、建筑、冶金等许多工业领域中广泛存在,因此,很早就受到关注[1-3]。一般情况下,对不同颗粒度的颗粒运动与沉积应有不同的研究方法,如微纳米颗粒可能需要考虑布朗力,而大颗粒可以忽略,大颗粒可能需要考虑颗粒的形态,  相似文献   

15.
Cyclone Separators and Electrostatic Precipitators (ESPs) are both effective particle separators. The former are more efficient at removing the larger particles, while the latter more suited to removing the smaller size classes. We explore the performance of an “Electrocyclone”, constructed by simply retrofitting an electrode coaxially to a small existing “Whitby” cyclone. Tests were performed with respect to particle size, resitivity, loading and various other operating parameters. Non‐electrical separation efficiencies ranged from 71 to 75 % and with the application of additional electrical forces the increase in separation efficiency was between 17 and 21 % at a cyclone Reynolds number of 19000, with the most conductive particle most easily separated. Further parametric testing correlated the effects of dust loading, electrocyclone Reynolds Number and particle cut upon separation efficiency. In particular we show that the separation of the smallest size cuts (D < 38 μm) of the dust sample almost doubled upon application of the corona. We conclude, based on this initial study of small devices, the range of use of cyclones may be extended significantly by the application of additional electrophoretic separation.  相似文献   

16.
In order to evaluate the influence of extremely low particle concentration on separation performance of cyclone separator, the overall collection efficiencies and grade efficiencies of a cyclone separator with particle concentrations of 5-2000 mg/m3 and inlet velocities of 6-30 m/s have been investigated under ambient temperature and atmospheric pressure conditions. Aerosol spectrometer based on measuring particle number is used to measure the particle concentrations and particle size distributions of the inlet and outlet of the cyclone separator. The overall efficiency is equal to the ratio of the particle concentration difference between the inlet and outlet of the cyclone separator to the inlet particle concentration. The grade efficiency is obtained by comparing the particle size distributions of the inlet and outlet of the cyclone separator. The effects of particle concentration on separation performance are predicted by Smolik empirical model. Particle agglomeration, which has been found in the inlet and outlet of the cyclone separator, has a very important influence on the collection efficiencies and grade efficiencies of the cyclone separator at the particle concentration of 5-2000 mg/m3. The cut sizes for different inlet gas velocity with extremely low particle concentration can be quantitatively calculated by Barth model, Mothes and Loffer model and Muschelknautz model, respectively. Experimental results show that the overall collection efficiencies and grade efficiencies increased with the increasing particle concentrations and inlet velocities, and most of the particles with the diameter bigger than 10 μm can be removed by cyclone separator.  相似文献   

17.
Inertial deposition of aerosol droplets (diameter: 1–14 μm) on steel spheres (diameter: 3–9 mm) was investigated. Air velocity was varied between 7 and 28 m/s (corresponding sphere Reynolds numbers: 1400–17000). The impaction on single spheres as well as that on linear arrays of eight spheres was measured. Theoretical results, based on potential flow investigations were verified by single sphere experiments. Of special interest was the range of lower Stokes numbers, where the theoretically predicted limit of deposition cannot be verified. The experiments on sphere arrays were for the first time performed in the low Stokes number range. Deposition on the leading sphere, relative to that on the shielded spheres, exhibits a maximum in the high Stokes number range, but this changes drastically in the low Stokes number range. Here, maximum deposition can be found on the shielded spheres while the leading sphere shows a markedly lower deposition.  相似文献   

18.
为了系统评价输气站场用多管导叶式旋风分离器的分离性能,模拟计算了入口速度7~27 m/s、颗粒密度1000~5000 kg/m3、颗粒浓度2.5~2500 g/m3、操作压力1~5 MPa条件下21管旋风分离器的分离效率和压降. 结果表明,多管旋风分离器的压降主要来自单管压降,约占整个压降的80%~90%,旋风子单独使用和并联使用时其流场分布规律相同,沿轴向对称分布,中心涡核处压力最低;分离效率和压降均随入口速度增大而增加,粒径为1~10 mm的固体颗粒分离效率从30.57%增加到63.86%,压降从9053 Pa增加到116864 Pa,在入口速度7~27 m/s范围内基本能除尽粒径大于6 mm的颗粒;随颗粒密度增加,分离效率增大,压降几乎不变;操作压力增大分离效率降低,而压降略增加. 各单管间进气量波动均不超过5%.  相似文献   

19.
Experimental results for gas-solid separations in a 102 mm diameter conventional cyclone operated with air heated to temperatures between 300 K and 2 000 K, are presented. Overall and fractional collection efficiencies were measured for alumina and silica having particle sizes of 100% less than 44 μm and mass median diameters of 5.0 and 10.0 μm respectively. Inlet velocities ranged from three to 42 m/s and inlet dust loads were between 0.3 and 235 g/m3. The dust load had a strong influence on the collection efficiency and the loading effect was stronger at high temperatures.  相似文献   

20.
王立新  吴冉 《化学工程》2012,40(3):43-47
双循环旋风分离器采用筒锥结构,有2个切向进气口,即主进气口和回流口,分别位于筒体的中部和顶端。排灰口底部设有稳流锥,灰仓侧壁设置了抽气口。通过实验研究了进口位置、进口气速、稳流锥和抽气操作对此新设备分离性能的影响。实验设备直径为0.250 m,实验物料采用粒径0.1—36μm,平均粒径为8.72μm的石英砂。结果表明:主进口进料,风速在12—19 m/s变化时,总分离效率为98.5%—99.17%,可以基本去除大于3μm的颗粒。主进口进料比回流口进料总分离效率大1.5%—3.5%。采用主进气口进料时,稳流锥可以提高总分离效率0.15%—0.2%,抽气操作可以提高总分离效率0.3%—0.4%;回流口进料时,分别提高1.5%—2%和0.6%—1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号