首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为改善镁合金的切削加工性能及加工表面完整性,优化切削加工工艺参数,基于拟水平法设计了四因素四水平正交车削试验,研究切削三要素以及切削介质(常温干切、液态二氧化碳和液氮)对ZK61M镁合金车削加工表面完整性的影响规律。实验结果表明:切削深度对切削力的影响最显著,进给量次之,切削速度的影响较小,低温切削能降低切削力,但对切削力的影响不显著;进给量对表面粗糙度和残余应力具有显著影响,随着进给量增大,表面粗糙度增大,并引入表面残余拉应力;冷却介质对表面粗糙度和表面残余应力具有次显著影响,相比于常温切削,采用低温切削能有效降低加工表面粗糙度,细化表层晶粒,增大表面残余压应力,同时,采用液态二氧化碳作为冷却介质的效果优于液氮。基于灰色关联分析得到ZK61M镁合金低温切削的最优工艺参数:vc=100 m/min,f=0.05 mm/r,ap=0.4 mm,采用液态二氧化碳作为冷却介质。用关联分析结果建立了工艺参数与加工质量间的响应预测模型,平均误差为7.93%。  相似文献   

2.
针对目前加工激光沉积制造钛合金Ti6Al4V存在的加工质量较差、加工效率较低等问题,以切削力、表面形貌、表面粗糙度、亚表面损伤作为评价指标,采用了正交试验的方法通过设置不同的铣削参数对立铣后的表面层进行分析.结果表明:切削深度对切削力和表面粗糙度的影响较大;在每齿进给量为0.03 mm、切削速度为70 mm/min、切削深度为0.9 mm、切削宽度为0.5 mm时,切削力较小,表面粗糙度较低且亚表面损伤较小;沉积钛合金会出现未熔化粉末颗粒缺陷.工艺参数会对沉积钛合金的加工产生重要影响,且加工参数仍需要进一步优化.  相似文献   

3.
从切削力、刀具磨损、表面粗糙度3方面进行实验研究,找出P20钢与718钢的切削共性,从而得到预硬型塑料模具钢的加工特性。结果表明,对主切削力影响较大的是切削深度和进给量;当切削速度超过80—90m/min时,表面粗糙度明显降低;与45钢相比,这类模具钢的刀具耐用度较差,且刀具主要磨损形态是磨料磨损。  相似文献   

4.
为了提高小型精密零件在切削过程中的表面加工质量,以小型精密零件的表面粗糙度为目标函数,设计并实施了一系列小型精密零件的切削加工试验.采用单因素试验法分析了切削深度、切削速度及供给量等工艺参数对目标函数的影响,运用多元线性回归分析法建立切削工艺参数与目标函数的关系模型,从而获得最佳工艺参数组合并进行试验验证.结果表明,切削速度与切削深度对表面粗糙度为负向影响,供给量为正向影响,经优化参数组合加工工件的表面粗糙度均匀性较好,产品表面质量得到了较大改善.  相似文献   

5.
硬铝合金超精密车削残余应力的仿真及试验   总被引:2,自引:0,他引:2  
为满足超精密车削加工零件低表面应力的使用性能要求,采用有限元和试验相结合的方法,对硬铝合金进行微米级的超精密车削仿真和试验.分析切削过程的切削力和切削温度,研究已加工表面残余应力产生的原因及残余应力的性质,得到切削深度和切削速度对已加工表面残余应力的影响规律.仿真结果表明:金刚石刀具车削硬铝合金,切削温度低,切削力小,但是单位切削力大.切削力是已加工表面形成残余压应力的主导因素.表层残余应力随着切削深度的增加而变大,随着切削速度的增大反而有减小的趋势.在微米级硬铝合金的超精密切削过程中,切削深度对已加工表面残余应力的影响更为显著.进行微米级的超精密车削试验,采用XRD对表层残余应力进行测量,对有限元仿真结果进行了验证,为硬铝合金超精密车削表面残余应力的控制打下理论基础.  相似文献   

6.
针对某型钛合金航空零件,通过切削实验,研究了刀具螺旋角、切削速度和每齿进给量对零件表面粗糙度的影响,在此基础上,为零件的切削加工选择了较为合理的刀具和切削参量,获得了合格的加工质量和较好的经济效益。  相似文献   

7.
通过切削实验,研究PCD刀具铣削SiC颗粒尺寸较大、体积比含量较高的SiCp/Al复合材料时,切削速度、每齿进给量、切削深度对已加工表面粗糙度的影响,根据对实验结果分析得出切削用量对已加工表面粗糙度的影响规律.  相似文献   

8.
运用DEFORM仿真软件对金属切削过程进行仿真实验,以金刚石为切削刀具,AISI52100淬硬钢为工件材料,采用正交仿真实验分析切削速度、进给量、切削深度对切削力的影响规律,并给出实验范围内的最优加工参数组合,当切削速度vc=120 m/min、进给量f=0.10 mm/r、切削深度为时ap=0.1 mm,切削力达到最小。最后运用回归分析方法建立切削力的经验模型,对得到的经验公式进行显著性检验,证明经验公式的可信性。  相似文献   

9.
使用TiAIN涂层整体圆柱立铣刀,对P20淬硬钢(41HRC,32HRC)进行了高速铣削试验,考察了各种切削速度下的切屑变形,微观硬度、切削温度和切削力.切削参数包括:切削速度151~942 m/min,每齿进给量0.1 mm/齿,轴向切削深度1.0 mm.切削宽度1.0 mm.结果表明:两种硬度的P20钢都产生了锯齿形切屑,切削温度随切削速度的增加而增大,工件硬度、切削速度对切屑变形和切削力有重要的影响.  相似文献   

10.
切削速度对精车AISIH13淬硬钢切削行为的影响   总被引:1,自引:0,他引:1  
为了探究淬硬钢的切削加工性能,采用YW2A细晶硬质合金刀具精车淬硬AISIH13钢,光学照相仪、测力仪(YDC-Ⅲ89B)、工具显微镜(XGJ-1) 、扫描电镜(JSM5800LV)及便携式粗糙度仪(TR100)用于试验检测,分析了切削速度对切屑形成、切削力、刀具磨损及零件表面粗糙度的影响规律。结果表明,随着切削速度增大,切屑由连续性带状向C型节段演变,切削力、刀具后刀面磨损及工件表面粗糙度值均呈减小趋势;在试验切削速度范围内,前刀面以粘结磨损和氧化、扩散磨损为主,切削温度是主因,而后刀面以疲劳剥落为主,机械应力起主导影响。  相似文献   

11.
通过对ZA22/Al2O3f复合材料机械加工表面粗糙度的研究,得知合理选择切削参数是提高加工表面质量,降低表面粗糙度的重要手段。高的切削速度,小的进给量及小的切削深度对提高该复合材料的表面质量有益。  相似文献   

12.
使用Ti—C基金属陶瓷刀具对45淬硬钢进行了切削试验,研究了切削用量对表面粗糙度的影响.试验分析表明,进给量对表面粗糙度影响最为显著,切削速度对表面粗糙度有一定影响,切削深度对表面粗糙度的影响很小.运用回归分析法,建立了硬态切削表面粗糙度预测模型,通过试验验证了预测模型的准确性.  相似文献   

13.
基于正交实验的40Cr车削性能的研究   总被引:1,自引:0,他引:1  
采用硬质合金车刀,利用正交实验法进行40Cr车削力的实验,得到切削速度、进给量、背吃刀量与车削力的关系,并且得出了切削力的经验公式。在实验过程中得知被吃刀量对切削力的影响是最大的,其次是进给量,切削速度影响较小。切削力因背吃刀量增大而增大;因进给量的增大而增大;切削速度大于50m/min时,切削力随着切削速度的增大而减小。  相似文献   

14.
通过实验分别研究了切削用量(包括切削速度、轴向进给量、周向进给量和切削深度)四要素在切削铸铝时对外圆表面粗糙度的影响,得到不同切削条件下的影响曲线,这对轴向车铣铸铝正确选择工艺参数有重要的指导意义。  相似文献   

15.
基于工艺参数优选结果,通过单因素试验分析不同切削环境和低温微量润滑环境下的切削参数(切削速度、进给量)、工艺参数(射流温度、切削油用量)对表面粗糙度、表面微观形貌、加工硬化和残余应力的影响及原因。结果表明,低温微量润滑环境可有效降低表面粗糙度,改善表面微观结构,减小加工硬化程度和残余应力;进给量减小和切削速度增加可以减小表面粗糙度和加工硬化,残余应力随进给量增加呈波动变化,随切削速度的增大呈增大趋势;加工硬化程度和残余应力均随射流温度的减小和切削油用量的增大呈先减小后增大趋势,在射流温度T=-45℃,切削油用量Q_o=20 ml/h时达到最小值。  相似文献   

16.
建立适用于变工况加工的切削力模型是将切削力信号用于切削过程监控的关键。建立了基于切削参数(切削速度、进给量、切削深度)与刀具状态(主要考虑后刀面磨损量)的切削力模型,通过试验值与模型的预测值之间的比较,进一步验证模型的准确性。  相似文献   

17.
高速切削最佳工艺参数的选择   总被引:7,自引:0,他引:7  
应用田口法时高速切削中切削参数最优化进行了分析.设计并实施了以切削速度、每齿进给量和切削深度为切削参数,表面粗糙度为测量指标的高速切削实验,并利用信号与干扰比、方差分析研究了各切削参数对表面粗糙度的影响,获得了最优切削参数组合。  相似文献   

18.
正交车铣运动轨迹的研究   总被引:5,自引:1,他引:4  
为了研究正交车铣加工时轴向进给量、铣刀与工件转速比以及铣刀偏心量等主要切削参数对被加工零件表面质量的影响,通过对正交车铣运动过程的分析,在建立了正交车铣加工刀具运动矢量模型的基础上,应用高级计算机语言编程和实际运行,对其运动轨迹进行了仿真.通过对仿真图形和正交车铣加工实验结果的综合分析比较,归纳总结了轴向进给量、铣刀与工件转速比以及铣刀偏心量等主要切削参数对被加工零件表面质量的影响.结果表明,减小铣刀的轴向进给量、增加铣刀与工件的转速比,均可减小被加工表面粗糙度,提高表面加工质量,而偏心量的变化对被加工表面粗糙度的影响很小.  相似文献   

19.
采用直径1mm带涂层硬质合金微铣刀在Ti6Al4V材料表面展开微铣削刀具磨损试验,研究三个主要切削参数即主轴转速、每齿进给量、切削深度对切削力及刀具磨损量的影响;试验利用扫描电子显微镜与能谱仪观察刀具磨损形貌,分析其化学元素的变化,研究微铣削刀具的磨损机理。结果表明:每齿进给量与切削深度的增大造成切削力、刀具磨损量均变大,为了减小微铣刀磨损,延长使用寿命,可提升主轴转速,选用较小的每齿进给量及切削深度进行加工。微铣削Ti6Al4V刀具磨损主要发生在刀尖部位,并且多种磨损形式同时出现,粘结磨损是造成刀具磨损的主要原因,低速条件下微铣削刀具的损伤机理以磨粒磨损和粘结磨损为主,切削速度增大后发生粘结磨损的同时微铣刀刀尖处有一定程度的氧化磨损。  相似文献   

20.
采用正交试验,并结合基于试验结果的经验模型,研究了PCBN刀具高速车削淬硬轴承钢的切削力及其变化规律,且对径向切削力模型进行了试验验证。结果表明,影响轴向力的主次因素为切削速度、背吃刀量和进给量;影响径向力、切向力和切削合力的主次因素为背吃刀量、进给量和切削速度;各切削分力随背吃刀量和进给量的增大呈线性增加趋势,随切削速度的增加是先增大而后又减小,径向力的增大趋势远大于轴向力和切向力。方差分析结果显示,切削力的回归模型线性关系高度显著,利用该模型对切削力进行预报,结果可靠,并进一步验证了背吃刀量是影响径向切削力的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号