首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between synthesis factors and the impact resistance of high impact polystyrene (HIPS) is investigated in the light of its morphology and dynamic mechanical properties. A decrease in polymerization temperature results in an increase in Tg, melt viscosity and molecular weight of the continuous polystyrene phase as characterized by gel permeation chromatography. The separated, occluded polystyrene phase however shows an invariant Tg suggesting that the grafting and/or crosslinking effect overweighs the molecular weight effect. The observed high impact strength has been correlated with the homogeneous 1-2 μ rubber particle size distribution, a comparatively sharp rubber Tg transition at lower temperature, and a much lower occluded polystyrene content in the dispersed phase.  相似文献   

2.
Poly1‐hexene was prepared using a conventional heterogeneous Ziegler–Natta catalyst and its stereoregularity was characterized using 13C‐NMR analysis. New kind of high impact polystyrene (HIPS) was prepared by radical polymerization of styrene in the presence of different amounts of synthesized poly1‐hexene (PH) as impact modifier (HIPS/PH) and compared with conventional high impact polystyrene with polybutadiene (HIPS/PB) as rubber phase. Scanning electron microscopy (SEM) revealed that the dispersion of poly1‐hexene in polystyrene matrix was more uniform compared with it in HIPS/PB. The impact strength of HIPS/PH was 29–79% and 80–289% higher than that in HIPS/PB and neat polystyrene, respectively. FTIR was used to confirm more durability of HIPS/PH samples toward ozonation. To study the effect of rubber type and amount on the Tgs of polystyrene, differential scanning calorimetry was employed. Results obtained from TGA demonstrated higher thermal stability of HIPS/PH sample in comparison with conventional HIPS/PB one. Our obtained results suggest new high impact polystyrene that in all studied aspects has better performance than the conventional HIPS. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43882.  相似文献   

3.
High-impact polystyrene (HIPS) constitutes a mechanically attractive composite, consisting of a glassy matrix and a rubberlike particle phase (gel phase). Dynamic mechanical spectroscopy was performed for the polystyrene matrix for three different types of HIPS as well as for the concentrated gel-phase material, at the vicinity of the respective glass-transition temperatures (Tg). An approximate estimation of the gel-phase modulus was attempted by using known mechanical models. A comparison with experiments was also made. The modulus of the composite was found to be lower than the theoretical lower bound for particulate composites. This was attributed to a separate phase between gel particles and the matrix. A diffusion-type variation of the modulus of this mesophase layer was estimated, and a correlation between calculated fitting parametric exponents and impact behavior of HIPS was found. Moreover, the Tgs of the materials under investigation were also measured with two independent methods. It was found that all types of HIPS presented higher Tgs than the pure matrix by 5 to 10°C with the highest Tg found being that of the gel-enriched material. The shift of Tgs to higher temperatures was attributed to an eventual increase of the effective cross-link density of the matrix because of grafting.  相似文献   

4.
Results of the dynamic mechanical behavior of atactic polystyrene (PS) and high‐impact polystyrene (HIPS) for temperatures between 300 and 425 K at a frequency of the order of 50 kHz are presented. The storage Young's modulus, (E′), of the HIPS is lower than the PS value, being the relationship between them a function of the rubber phase volume fraction, independent of the measurement frequency. The glass transition temperature (Tg) of HIPS is shifted to lower temperature in respect to the PS. The γ relaxation appears at 308 K in PS at 50 kHz, while it seems to move toward lower temperatures in the HIPS. Both shifts are attributed to the presence of mineral oils in the HIPS. The values of E′, Tg, and the temperature of the γ relaxation at 50 kHz are discussed within the scope of the theory of viscoelasticity. Finally, the effect of thermal treatments, using different annealing times, on the behavior of both materials is shown. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 865–873, 2000  相似文献   

5.
The crystallization behaviors, dynamic mechanical properties, tensile, and morphology features of polyamide1010 (PA1010) blends with the high‐impact polystyrene (HIPS) were examined at a wide composition range. Both unmodified and maleic‐anhydride‐(MA)‐grafted HIPS (HIPS‐g‐MA) were used. It was found that the domain size of HIPS‐g‐MA was much smaller than that of HIPS at the same compositions in the blends. The mechanical performances of PA1010–HIPS‐g‐MA blends were enhanced much more than that of PA1010–HIPS blends. The crystallization temperature of PA1010 shifted towards higher temperature as HIPS‐g‐MA increased from 20 to 50% in the blends. For the blends with a dispersed PA phase (≤35 wt %), the Tc of PA1010 shifted towards lower temperature, from 178 to 83°C. An additional transition was detected at a temperature located between the Tg's of PA1010 and PS. It was associated with the interphase relaxation peak. Its intensity increased with increasing content of PA1010, and the maximum occurred at the composition of PA1010–HIPS‐g‐MA 80/20. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 857–865, 1999  相似文献   

6.
Core–shell polybutadiene‐graft‐polystyrene (PB‐g‐PS) rubber particles with different ratios of polybutadiene to polystyrene were prepared by emulsion polymerization through grafting styrene onto polybutadiene latex. The weight ratio of polybutadiene to polystyrene ranged from 50/50 to 90/10. These core‐shell rubber particles were then blended with polystyrene to prepare PS/PB‐g‐PS blends with a constant rubber content of 20 wt%. PB‐g‐PS particles with a lower PB/PS ratio (≤70/30) form a homogeneous dispersion in the polystyrene matrix, and the Izod notched impact strength of these blends is higher than that of commercial high‐impact polystyrene (HIPS). It is generally accepted that polystyrene can only be toughened effectively by 1–3 µm rubber particles through a toughening mechanism of multiple crazings. However, the experimental results show that polystyrene can actually be toughened by monodisperse sub‐micrometer rubber particles. Scanning electron micrographs of the fracture surface and stress‐whitening zone of blends with a PB/PS ratio of 70/30 in PB‐g‐PS copolymer reveal a novel toughening mechanism of modified polystyrene, which may be shear yielding of the matrix, promoted by cavitation. Subsequently, a compression‐induced activation method was explored to compare the PS/PB‐g‐PS blends with commercial HIPS, and the result show that the toughening mechanisms of the two samples are different. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
By using in situ prepolymerization and radiation curing, high‐impact polystyrene (HIPS) with a bimodal distribution of the size of the rubber particles (bimodal HIPS) was synthesized in the presence of ultrafine full‐vulcanized powdered styrene–butadiene rubber (UFPSBR) and polybutadiene rubber (BR). TEM photographs indicated that UFPSBR was dispersed uniformly as a single particle with a diameter of about 100 nm. On the other hand, bimodal HIPS with different rubber particle size distributions could also be obtained by blending HIPS and UFPSBR grafting styrene (UFPSBR‐g‐St) with different grafting yields. The bimodal HIPS with the smallest rubber particle size, at about 100 nm, could be prepared by blending the monomodal HIPS containing big rubber particles with polystyrene/UFPSBR. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Blends consisting of high‐impact polystyrene (HIPS) as the matrix and polyamide 1010 (PA1010) as the dispersed phase were prepared by mixing. The grafting copolymers of HIPS and maleic anhydride (MA), the compatibilizer precursors of the blends, were synthesized. The contents of the MA in the grafting copolymers are 4.7 wt % and 1.6 wt %, and were assigned as HAM and LMA, respectively. Different blend morphologies were observed by scanning electron microscopy (SEM); the domain size of the PA1010 dispersed phase in the HIPS matrix of compatibilized blends decreased comparing with that of uncompatibilized blends. For the blend with 25 wt % HIPS‐g‐MA component, the Tc of PA1010 shifts towards lower temperature, from 178 to 83°C. It is found that HIPS‐g‐MA used as the third component has profound effect on the mechanical properties of the resulting blends. This behavior has been attributed to the chemical reaction taking place in situ during the mixing between the two components of PA1010 and HIPS‐g‐MA. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 799–806, 2000  相似文献   

9.
γ‐Radiation vulcanized natural rubber (RVNR)/phase transfer/suspension polymerization technique was used to prepare high‐impact polystyrene (HIPS) in bead form. The high notched Izod impact resistance of HIPS based on RVNR was observed and compared with that of unmodified PS. The impact resistance of HIPS based on RVNR was further enhanced by addition of 10% of polystyrene‐block‐polyisoprene‐block‐polystyrene copolymer. A mesh structure of all crosslinked rubber particles containing polystyrene and long crazes in HIPS were observed under electron microscopy. Copyright © 2003 Society of Chemical Industry  相似文献   

10.
The effects of elastomer type on the morphology, flammability, and mechanical properties of high‐impact polystyrene (HIPS)/polystyrene (PS)‐encapsulated magnesium hydroxide (MH) were investigated. The ternary composites were characterized by cone calorimetry, mechanical testing, and scanning electron microscopy. Morphology was controlled with poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) triblock copolymer or the corresponding maleinated poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS‐g‐MA). The HIPS/SEBS/PS‐encapsulated MH composites exhibited separation of the filler and elastomer, whereas the HIPS/SEBS‐g‐MA/PS‐encapsulated MH composites exhibited encapsulation of the filler by SEBS‐g‐MA. The flame‐retardant and mechanical properties of the ternary composites were strongly dependent on microstructure. The composites with an encapsulation structure showed higher flame‐retardant properties than those with a separation structure at the optimum use level of SEBS‐g‐MA. Furthermore, the composites with a separation structure showed a higher modulus and impact strength than those with an encapsulation structure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

11.
采用接枝(乙烯/丙烯/二烯)共聚物(EPDM)、K胶、(苯乙烯/丁二烯/苯乙烯)共聚物(SBS)和粉末丁腈橡胶(NBR)为高分子材料增韧剂,十溴联苯醚和三氧化二锑为阻燃剂,高抗冲聚苯乙烯(HIPS)为基体树脂通过共混、挤出过程制得增韧阻燃HIPS复合材料。对该复合材料的力学性能、阻燃性能进行测试,分析了该复合材料的微观结构,并讨论了复合材料的增韧机理。结果表明,SBS比其它3种增韧剂的增韧作用明显,并有良好的阻燃效果。  相似文献   

12.
The phase partitioning of additives in polymer blends has a large impact on the performance of the blend. Therefore, it is necessary to be able to quantify the level of the additives in each phase. A 1H–NMR method is presented to determine the partitioning of additives between the rubber and rigid phases of a high‐impact polystyrene (HIPS) material. In one case, a HIPS material was modified with 2,6‐di‐tert‐butyl‐4‐methyl‐phenol (Ionol, CAS# 128‐37‐OMF) as a stabilizer for both phases. HIPS materials with varying levels of Ionol were melt‐blended by extrusion and the total level of additives was determined analytically for these standard materials. The 1H–NMR method was used to determine the level of Ionol in the poly(butadiene) rubber phase. The Ionol was found to preferentially partition into the rubber phase with a partition coefficient of about 2. A second example of the same concept, instead utilizing 13C–NMR, involved the analysis of the partition coefficient for both Tinuvin P and Tinuvin 770 (CAS# 2440‐22‐4 and 52829‐07‐9), partitioning between the rigid and rubber phases of an ethylene–propylene–diene‐modified (EPDM) toughened styrene–ran–acrylonitrile (SAN) copolymer. The partition coefficient was determined to be 0.5 for Tinuvin P and 1.3 for Tinuvin 770. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1963–1970, 2001  相似文献   

13.
The effects of aging at 85°C on a rubber-modified polystyrene (HIPS) have been studied as a function of aging time in both air and nitrogen. Four different types of physical measurements were carried out on the aged samples. These included mechanical relaxation measurements, tensile stress–strain measurements, creep measurements at several stresses, and measurements of fatigue lifetime under applied tension–compression stress. Aging in nitrogen is largely a physical aging process and results in higher modulus, higher tensile strength, and longer delay times to the onset of accelerating creep deformation. But tensile ductility and fatigue lifetime tend to reduce, and there is no change in location of Tg of the rubber phase. Aging in air involves both chemical and physical aging, and the changes that occur depend on which process dominates. For long-time aging of 150 h or more, the rubber-phase Tg is shifted to higher temperatures and the associated loss peak is broadened due to crosslinking. Also, the tensile strength, tensile ductility, creep delay time, and fatigue life all reduce. These effects are attributed to oxidative attack and embrittlement. SEM micrographs reveal variations in fracture surface morphology due to the mode of testing and to the aging medium.  相似文献   

14.
Segmental dynamics of two phase‐separated reactively prepared polystyrene blends namely unsaturated polyester resin (UPR) and high impact polystyrene (HIPS) was investigated by dynamic–mechanical spectroscopy and calorimetric studies. The results showed a thermorheologically simple behavior for the HIPS, which could be quantified based on the KWW function with βKWW of 0.37. The UPR data, however, could not be evaluated using KWW function, even though lower βKWW than the HIPS was expected for it. Furthermore, the α‐dispersion of the UPR was considerably broader while its fragility index was comparable with the HIPS. Nonetheless, segmental dynamics comparison based on normalized ΔCp(Tg) by molecular weight of the structural units of the studied systems showed much greater differences. Accordingly, the UPR was both kinetically and thermodynamically more fragile than the HIPS. The higher fragility of the UPR could be attributed to its larger relative cooperativity size and topological constraints. Finally, enhanced contrast in dynamic fragilities of two studied systems could be achieved if similar overall and local compositions could be made experimentally. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

15.
Abdulrahman Alfarraj 《Polymer》2004,45(25):8435-8442
Significant improvements in impact strength were achieved in polystyrene blends that combined conventional HIPS particles in combination with particles produced by compositional quenching. A commercial HIPS was solvated and blended with additional polystyrene, rubber and diblock copolymer, and the mixture was flash devolatilized to give the end-product. Impact strengths of injection and compression molded samples and tensile properties are reported. It is known that the best impact modified polystyrene obtained by compositional quenching, here called aHIPS, has smaller and lower modulus rubber particles than conventional HIPS, and has more than twice the impact strength of conventional HIPS. The novel blends of HIPS and aHIPS reported here exhibit synergism, the impact strength of the blend being higher than expected as a linear average of the component properties. The rubber phase volume including occlusion was held at 23%. An interior optimum in rubber efficiency (i.e. Izod impact per unit weight of rubber) was observed when 75% of the phase volume was derived from HIPS while an interior minimum was observed when 25% of the phase volume was derived from HIPS. The elongation at break and tensile impact strength exhibited a form of negative synergism, indicating that conventional HIPS is superior in low speed tests and aHIPS is better in high speed tests such as Izod.  相似文献   

16.
Polyisoprene‐block‐polystyrene‐block‐polyisoprene (ISI) was synthesized by the iniferter route and its use, as compared to a commercial polystyrene‐block‐polyisoprene‐block‐polystyrene (SIS), in the enhancement of the toughness of high‐impact polystyrene (HIPS), prepared by the γ‐radiation vulcanized natural rubber (RVNR) latex/phase transfer/bulk polymerization technique, was investigated. Addition of 5% SIS was adequate as an interfacial agent, which effectively increased the unnotched Izod impact energy of HIPS, whereas use of 10% of ISI was required. A long polyisoprene block with two polystyrene segments of SIS was favorable for compatibilization of HIPS. Transmission electron micrographs revealed the uniform distribution of the block copolymer at the shell region of the rubber particle. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1307–1316, 2002  相似文献   

17.
Effects of hydrostatic extrusion on the thermal properties of polycarbonate (PC) and of high-impact polystyrene (HIPS) were studied using differential scanning calorimeter (DSC) measurements. A glass transition temperature (Tg) and a peak temperature were determined from the DSC curves for both PC and HIPS extrudates. The Tg values of the PC extrudates, with a percentage reduction in area, R, from 40 to 50%, change appreciably from the value for the as–received PC. The results of the hydrostatic extrusion of the PC billets suggest that a two stage deformation process of molecular chains may be involved. Shear-banding is observed for HIPS extrudates with R = 30 to 60%; this fact indicates that a sub-glass transition (β-transition) occurs at temperatures below Tg. It is suggested that the molecular chains of the HIPS extrudate with R = 70% are oriented in the direction of hydrostatic extrusion. The deformation mechanism of molecular chains caused by the hydrostatic extrusion is discussed.  相似文献   

18.
Core–shell poly(butadiene‐graft‐styrene) (PB‐g‐PS) rubber particles were synthesized with different initiation systems by emulsion grafting polymerization. These initiation systems included the redox initiators and an oil‐soluble initiator, 1,2‐azobisisobutyronitrile (AIBN). Then the PB‐g‐PS impact modifiers were blended with polystyrene (PS) to prepare the PS/PB‐g‐PS blends. In the condition of the same tensile yield strength on both samples, the Izod test showed that the notched impact strength of PS/PB‐g‐PS(AIBN) was 237.8 J/m, almost 7 times than that of the PS/PB‐g‐PS(redox) blend, 37.2 J/m. From transmission electron microscope (TEM) photographs, using the redox initiators, some microphase PS zones existed in the core of PB rubber particles, which is called “internal‐grafting.” This grafting way was inefficient on toughening. However, using AIBN as initiator, a great scale of PS subinclusion was seen within the PB particle core, and this microstructure increased the effective volume fraction of the rubber phase with a result of improving the toughness of modified polystyrene. The dynamic mechanical analysis (DMA) on both samples showed that the glass transition temperature (Tg) of rubber phase of PS/PB‐g‐PS(AIBN) was lower than that of PS/PB‐g‐PS(redox). As a result, the PB‐g‐PS(AIBN) had better toughening efficiency on modified polystyrene than the PB‐g‐PS(redox), which accorded with the Kerner approximate equation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 738–744, 2007  相似文献   

19.
Nanocomposites based on high impact polystyrene (HIPS) and silver nanoparticles (AgNPs) were synthesized via in situ bulk‐suspension polymerization adding a colloidal suspension of AgNPs in styrene from the beginning of the reaction. The concentrations of AgNPs in the final nanocomposites were 0, 0.025, 0.10, and 1.0 wt%. The rate of polymerization and free radicals concentration were found to decrease with increasing AgNPs concentration. For nanocomposites with 0.025 and 0.10 wt% of AgNPs, the phenomenon of phase inversion (PI) during the mass polymerization occurred within the same range as that for the blank HIPS. Further, the impact strength of these nanocomposites did not present any changes as compared to the blank HIPS. However, there was no sign of the PI phenomenon in the case of 1.0 wt% of AgNPs, due to a decrease in the amount of free and graft polystyrene onto the rubber chain as the free radicals concentration diminishes with an increase in AgNPs. In this case the impact strength doubles the values of the blank HIPS due to the presence of a interpenetrated polymer network of crosslinked grafted rubber and polystyrene (PS) instead of the formation of a defined morphology. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
The effect of additives on glass transition behavior in melt processed blends of polystyrene (PS) and polypropylene (PP) was studied. Blends of additive‐free polystyrene and additive‐free polypropylene revealed the known effect of the PS Tg increase in blend compositions where PP surrounds PS. Glass transition behavior in these blends was compared to blends prepared from additive‐free PP and commercial grade PS, which contained lubricant additives. The thermal transitions of PS and PP were measured using modulated DSC. Although the behavior of low PS concentration blends was similar in both systems, the characteristics of the high PS blends differed substantially. These differences and the contrast in the PP Tg behaviors were attributed to the migration of additives from the PS phase across the immiscible interface into the PP phase. Similar Tg variations were observed in blends of commercial grade PS and commercial grade PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号