首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(styrene-block-ethylene oxide) (PS–PEO) diblock copolymers have been synthesized with predictable block molecular weights and narrow molecular weight distributions. sec-Butyllithium-initiated polymerization of styrene was effected in benzene solution followed by ω-end-group functionalization with ethylene oxide to form the corresponding polymeric lithium alkoxide (PSOLi). Block copolymerization of ethylene oxide initiated by the unreactive PSOLi was promoted by addition of dimethylsulfoxide and either potassium t-butoxide, potassium t-amyloxide or potassium 2,6-di-t-butylphenoxide. Although the PS–PEO block copolymer product contained some poly(ethylene oxide) homopolymer, the poly(ethylene oxide) block n was in good agreement with the calculated value and the molecular weight distribution of the final block was generally narrow (w/n ≤ 1.1). The amount of PEO homopolymer was minimized using potassium 2,6-di-t-butylphenoxide rather than potassium t-alkoxides.  相似文献   

2.
Mesoporous molecular sieves, with pore diameters of 2.6–25 nm, were impregnated with methylaluminoxane and bis(butylcyclopentadienyl)zirconium dichloride and tested as catalysts for the gas‐phase homopolymerization of ethylene at ethylene pressures of 200 psi and temperatures of 50–100°C and for 1‐hexene/ethylene copolymerization at 70°C. The activities and activity profiles, at constant Zr and Al contents, depended on the pore size of the supports and the polymerization temperature. Maximum activities for both the homopolymerizations and copolymerizations were observed for catalysts made with supports having pore diameters of 2.6 and 5.8 nm. Homopolymerization activities were highest at temperatures of 70–80°C; average homopolymerization and copolymerization activities up to 9000 kg of polyethylene/(mol of Zr h) were obtained. The weight‐average molecular weights (Mw's) were not a function of the support pore size but decreased with increasing reaction temperatures, from about 260,000 at 50°C to about 165,000 at 100°C. The polydispersities were essentially constant at 2.5 ± 0.2 for the homopolymers. Mw's for the 1‐hexene/ethylene copolymers had an average value of 117,000 with an average polydispersity of 2.8. The amount of triisobutyl aluminum added to the reactor significantly affected the activity and activity profiles. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1161–1177, 2003  相似文献   

3.
Few years ago, the two broad standard method of molecular weight (MW) calibration was proposed1 and the presence of negative σ2 (peak dispersion coefficient) was found to be somewhat disturbing. The limitation of the method was not specified. Since large negative values of σ2 cannot be tolerated, herein is reported another type of instrumental spreading function for which the method may seem to apply, and an evaluation of this method. In its evaluation, plots of loge (intercept of a linear molecular weight calibration curve), that is, loge(D1) vs. the corresponding slope of the molecular weight calibration curve, D2, which were found to be linear, were used. The systems employed were Dextran/Corning controlled porous glass (CPG-10) packing in well-chosen mobile phase.  相似文献   

4.
The kinetics and molecular weight averages of the hyperbranched polymers formed by the alternating copolymerization of equimolar allyl methyl maleate (AMM) and N‐n‐propyl maleimide (PMI) were investigated. The yields, molecular weight averages, and polydispersity indices as well as the branching degrees of the produced copolymers increased with increasing initiator concentrations and prolonged polymerization time. The trends of the experimental molecular weights as determined by size exclusion chromatography were in good agreement with the theoretical predictions. The molecular weight distribution indices fit the curve given by Mw/Mn = 1/(1‐xD), and the molecular weights fit the curve given by Mw = 4076/(1‐xD)2, where xD was the conversion of vinyl groups. DSC studies demonstrated a nonlinear relation of Tg values to the reciprocal of molecular weight (M), and Tg values decreased with the increase of molecular weight. For the Tg values of highly branched polymers in high molecular weight range, a relation of Tg = T + k/M was obtained, where T was obtained by extrapolating to infinite molecular weight and k was a constant. T was 136°C, and k = 2.9 for this work. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1941–1947, 2005  相似文献   

5.
Elastoplastic poly(styrene‐co‐ethylene) with high molecular weight was synthesized using novel mono(η5‐pentamethylcyclopentadienyl)tribenzyloxy titanium [Cp*Ti(OBz)3] complex activated with four types of modified methylaluminoxanes (mMAO) containing different amounts of residual trimethylaluminum (TMA). The ideal mMAO, used as a cocatalyst for the copolymerization of styrene with ethylene, contains TMA approaching to 17.8 wt %. The oxidation states of the titanium‐active species in different Cp*Ti(OBz)3/mMAO catalytic systems were determined by the redox titration method. The results show that both active species may exist in the current system, where one [Ti(IV)] gives a copolymer of styrene and ethylene, and the second one [Ti(III)] only produces syndiotactic polystyrene (sPS). Catalytic activity, compositions of copolymerization products, styrene incorporation, and copolymer microstructure depend on copolymerization conditions, including polymerization temperature, Al/Ti, molar ratio, and comonomers feed ratio. The copolymerization products were fractionated by successive solvent extractions with boiling butanone and tetrahydrofuran (THF). The copolymer, chiefly existing in THF‐soluble fractions, was confirmed by 13C‐NMR, GPC, DSC, and WAXD to be an elastoplastic copolymer with a single glass transition temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1851–1857, 1999  相似文献   

6.
Molecular weight distributions for polypropylene samples have been determined by a permeation fractionation method (GPC). Porous silica beads were used as a packing material for the columns. The set of columns allows a good separation of the polypropylene macromolecular chains in a range of molecular weights from 5000 to 1.5 × 106, and the thermal and mechanical stabilities of these beads are very good. The calibration has been carried out with fractions of polypropylene of narrow molecular weight distribution prepared by a large-scale column fractionation. The molecular weights M?w and M?n and the ratios M?w/M?n calculated from the GPC curves show, in general, good agreement with the ones calculated from the column fractionation curves. However, the M?w/M?n ratios are always highter in the case of GPC fractionation. This could be due to diffusion phenomena.  相似文献   

7.
In this article, comonomer effects in copolymerization of ethylene and 1‐hexene with four MgCl2‐supported Ziegler‐Natta catalysts using either ethylene or 1‐hexene as the main monomer were investigated. It was found that no matter which monomer was used as the main monomer, the polymerization activity was significantly enhanced by introducing small amount of comonomer. In copolymerization with ethylene as the main monomer, the strength of comonomer effects was much stronger in active centers producing low‐molecular‐weight polymer than those producing high‐molecular‐weight polymer. In copolymerization with 1‐hexene as the main monomer, the number of active centers ([C*]/[Ti]) was determined, and the propagation rate constants (kp) were calculated. Deconvolution of the polymer molecular weight distribution into Flory components were made to study the active center distribution. Introduction of small amount of ethylene caused marked increase in the number of active centers and decrease in average chain propagation rate constant. Introducing internal electron donor in the catalyst enhanced not only the number of active centers but also the chain propagation rate constant. In copolymerization of 1‐hexene with small amount of ethylene, the internal donor weakened the comonomer effects to some extent and changed the distribution of comonomer effects among different types of active centers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41264.  相似文献   

8.
Ni(II)-α-diimine catalyst [(2,6-i-Pr)2C6H3-DAB(An)]NiBr2 plus methylaluminoxane was successfully used in the homopolymerization of ethylene, 1-hexene, and 1-octene and the copolymerization of ethylene with 1-hexene and 1-octene in n-hexane. The polymerization of 1-octene was conducted in a controlled manner with a narrow molecular weight distribution (M w/M n = 1.2–1.5) and with the weight-average molecular weight increasing linearly with the monomer conversion. The molecular weights, T g, T m, branching degree, and density of the obtained (co)polymers were greatly controlled by ethylene pressure and polymerization temperature. Compared with that of ethylene homopolymer, the branching degree of the copolymers prepared by the copolymerization of ethylene with 1-hexene or 1-octene increased, whereas the molecular weight, density, T m, and catalyst activity decreased. However, compared with those of the homopolymer of 1-hexene or 1-octene, the copolymer density, T m, and catalyst activity increased, whereas the branching degree declined.  相似文献   

9.
Gel permeation chromatography produces a type of differential molecular weight distribution directly and rapidly. Conversion of these data to conventional molecular weight distributions and plots of distributions is time-consuming. A computer program is described to perform these operations readily. Input data from the automated chromatograph, elution volume, and recorder deflection are converted to unit sensitivity and base line corrections applied. The curve is then numerically integrated and a calibration curve used to convert elution volumes into molecular weights. Various calibration curves can readily be introduced into the program. The output, in addition to tabulation of cumulative and differential molecular weight distributions, contains values of M?n, M?v, M?w, M?z, and M?z+1. Importantly, a reduced absolute area, i. e., area computed for unit sensitivity on a unit concentration basis, is tabulated. An additional time-saving eature is the printing out of differential and cumulative molecular weight distribution curves and of a differential histogram.  相似文献   

10.
Poly(butylene 2,6‐naphthalate) (PBN)/poly(ethylene glycol) (PEG) copolymers were synthesized by the two‐step melt copolymerization process of dimethyl‐2,6‐naphthalenedicarboxylate (2,6‐NDC) with 1,4‐butanediol (BD) and PEG. The copolymers produced had different PEG molecular weights and contents. The structures, thermal properties, and hydrophilicities of these copolymers were studied by 1H NMR, DSC, TGA, and by contact angle and moisture content measurements. In particular, the intrinsic viscosities of PBN/PEG copolymers increased with increasing PEG molecular weights, but the melting temperatures (Tm), the cold crystallization temperatures (Tcc), and the heat of fusion (ΔHf) values of PBN/PEG copolymers decreased on increasing PEG contents or molecular weights. The thermal stabilities of the copolymers were unaffected by PEG content or molecular weight. Hydrophilicities as determined by contact angle and moisture content measurements were found to be significantly increased on increasing PEG contents and molecular weights. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2677–2683, 2006  相似文献   

11.
Average molecular weights (Mn, Mw and Mp) are important characteristics of oligomers and polymers, and therefore there is a need to have a precise and reliable determination method. A gel permeation chromatography (GPC) coupled with a single refractive index detector was used to determine the molecular weight distributions of commercial polyether polyols calibrated against a series of polyether polyols with known molecular weights and low polydispersity. Results of these GPC analyses were compared to the ones calibrated against the commercially available polystyrene (PS) standards. The number‐average molecular weights (Mn) obtained with GPC using polyether polyols calibration were closer to the theoretical values than the Mn obtained using PS as calibration standards. Hence, these GPC analyses using polyether polyols as calibration standards can provide reliable determination of molecular weight distribution of polyether polyols and can be potentially applied to natural oil‐based polyols, including palm oil‐based polyols. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42698.  相似文献   

12.
Poly(ethylene isophthalate‐co‐ethylene terephthalate) (PEIPET) copolymers of various compositions and molecular weights were synthesized by melt polycondensation and characterized in terms of chemical structure and thermal and rheological properties. At room temperature, all copolymers were amorphous and thermally stable up to about 400°C. The main effect of copolymerization was a monotonic increase of glass transition temperature (Tg) as the content of ethylene terephthalate units increased. The Fox equation accurately describes the Tg–composition data. The presence of ethylene terephthalate units was found to influence rheological behavior in the melt, with the Newtonian viscosity increasing as the content of ethylene terephthalate units increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 186–193, 2004  相似文献   

13.
Free‐radical copolymerization of 4‐nitrophenyl acrylate (NPA) with n‐butyl methacrylate (BMA) was carried out using benzoyl peroxide as an initiator. Seven different mole ratios of NPA and BMA were chosen for this study. The copolymers were characterized by IR, 1H‐NMR, and 13C‐NMR spectral studies. The molecular weights of the copolymers were determined by gel permeation chromatography and the weight‐average (M w) and the number‐average (M n) molecular weights of these systems lie in the range of 4.3–5.3 × 104 and 2.6–3.0 × 104, respectively. The reactivity ratios of the monomers in the copolymer were evaluated by Fineman–Ross, Kelen–Tudos, and extended Kelen–Tudos methods. The product of r1, r2 lies in the range of 0.734–0.800, which suggests a random arrangement of monomers in the copolymer chain. Thermal decomposition of the polymers occurred in two stages in the temperature range of 165–505°C and the glass transition temperature (Tg) of one of the systems was 97.2°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1817–1824, 2003  相似文献   

14.
Two novel magnesium chloride supported, vanadium‐based Ziegler–Natta catalysts with 9,9‐bis(methoxymethyl)fluorene and di‐i‐butyl phthalate as internal donors were prepared and used in the copolymerization of ethylene and propylene. The catalytic behaviors of these catalysts were investigated and compared with those of traditional magnesium chloride supported, vanadium‐based catalysts without internal donors. Differential scanning calorimetry, gel permeation chromatography, and 13C‐NMR spectroscopy analysis were performed to characterize the melting temperatures, molecular weights, and molecular weight distributions as well as structures and compositions of the products. The copolymerization kinetic results indicated that the novel catalyst with 9,9‐bis(methoxymethyl)fluorene as an internal donor had the highest catalytic activity and optimal kinetic behavior in ethylene–propylene copolymerization with an ethylene/propylene molar ratio of 44/56. Low‐crystallinity and high‐molecular‐weight copolymers were obtained with these novel magnesium chloride supported, vanadium‐based catalysts. The reactivity ratio data indicated that the catalytic systems had a tendency to produce random ethylene–propylene copolymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Four low molecular weight nonionic polymeric surfactants were prepared by condensing octyl-, dodecyl-, tetradecyl- and hexadecylphenol with para-formaldehyde, and then reacting the resulting resins with ethylene oxide to obtain products with the desired degree of ethoxylation. The molecular weights of the prepared alkylphenol-formaldehyde resins (prior to ethoxylation) were determined by vapour pressure osmometry. The surface tensions of aqueous solutions of these nonionic polymeric surfactants were determined by using the spinning drop method. Plotting the surface tensions obtained versus the logarithm of concentrations resulted in two lines: the pre-CMC (CMC = critical micelle concentration) line (the linear portion below the CMC value) and the post-CMC line (the linear portion above the CMC value). Least squares regression analysis was performed to get the best equation for each of the two lines. Solving these two equations simultaneously resulted in the value of the CMC and the corresponding surface tension (γCMC) for each surfactant of the four polymeric nonionic groups. The CMC values obtained for these polymeric surfactants are of the same order of magnitude obtained for monomeric and other polymeric nonionic surfactants.  相似文献   

16.
Polyethylene samples were characterized in trichlorobenzene at 135°C by high-temperature dynamic laser light scattering (LLS). Precise measurements of the intensity-intensity time correlation function permit us to make a Laplace inversion to obtain an estimate of the normalized translational diffusion coefficient distribution [G(D)]. After establishing a calibration between the translational diffusion coefficient (D) and molar mass, by using six moderately dispersed polyethylene samples, we were able to transform G(D) to molecular weight distribution (MWD), and to calculate the weight average molecular weight (Mw), which weights were comparable with the ones obtained by using static LLS and size exclusion chromatograph (SEC). The advantages and limitations of using dynamic LLS as a routine method to characterize of polyethylene are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Atom transfer radical bulk copolymerization of styrene (St) and methyl acrylate (MA) initiated with trichloromethyl‐terminated poly(vinyl acetate) macroinitiator was performed in the presence of CuCl/PMDETA as a catalyst system at 90°C. Linear dependence of ln[M]0/[M] versus time data along with narrow polydispersity of molecular weight distribution revealed that all the homo‐ and copolymerization reactions proceed according to the controlled/living characteristic. To obtain more reliable monomer reactivity ratios, the cumulative average copolymer composition at moderate to high conversion was determined by 1H‐NMR spectroscopy. Reactivity ratios of St and MA were calculated by the extended Kelen‐Tudos (KT) and Mao‐Huglin (MH) methods to be rSt = 1.018 ± 0.060, rMA = 0.177 ± 0.025 and rSt = 1.016 ± 0.053, rMA = 0.179 ± 0.023, respectively, which are in a good agreement with those reported for the conventional free‐radical copolymerization of St and MA. Good agreement between the theoretical and experimental composition drifts in the comonomer mixture and copolymer as a function of the overall monomer conversion were observed, indicating that the reactivity ratios calculated by copolymer composition at the moderate to high conversion are accurate. Instantaneous copolymer composition curve and number‐average sequence length of comonomers in the copolymer indicated that the copolymerization system tends to produce a random copolymer. However, MA‐centered triad distribution results indicate that the spontaneous gradient copolymers can also be obtained when the mole fraction of MA in the initial comonomer mixture is high enough. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
New methods for calibrating SEC columns by means of polydisperse polymer samples with known Mn and Mw have been tested with computer-generated chromatograms and with experimental data of high-performance SEC. Calculations with the artificial chromatograms show that accurate calibration dependences can be recovered even when polymers with broad and/or bimodal molecular weight distributions are used as standards. Polystyrene calibration calculated by the proposed method from chromatograms of five polydisperse polystyrenes follows closely the curve obtained in a conventional manner from nine narrow polystyrene standards. The dependence log M vs. ν for PMMA determined from chromatograms of six PMMA samples with moderately broad molecular weight distributions agrees well with the curve obtained by shifting the dependence for polystyrene using the universal calibration concept. The new method is particularly useful when SEC columns are to be calibrated for dextrans in water, where only a few standards having a rather broad molecular weight distribution are available, and can considerably improve the accuracy of molecular weight determination by SEC.  相似文献   

19.
A kinetic model was developed for the living copolymerization of ethylene/1‐octene using the fluorinated FI‐Ti catalyst system, bis[N‐(3‐methylsalicylidene)‐2,3,4,5,6‐pentafluoroanilinato] TiCl2/dried methylaluminoxane is presented. The model was first validated by batch polymerization experiments. Kinetic parameters were estimated from the model correlations with online ethylene consumption rates and end‐of‐batch copolymer molecular weight. The model was then used to calculate the microstructural properties of ethylene/1‐octene copolymers with controlled composition profiles (uniform, diblock, and step triblock), which were synthesized using sequential comonomer feeding policies in semibatch copolymerization. The synthesized block copolymers had the exact composition distributions and molecular weights as the model simulated. It was demonstrated that the polymer chain microstructure in the living copolymerization of olefins could be precisely regulated by using semibatch comonomer feeding policies. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4686–4695, 2013  相似文献   

20.
Changes in degree of polymerization (DP) of cellulose during the viscose process were investigated by determining the number average molecular weight (n), weight average molecular weight (ω), and polydispersity (ω/n) giving molecular weight distribution (MWD). In general, a reduction in DP from the pulp stage to the final filament stage was noticed. Maximum degradation was observed to take place during xanthation and not during aging as sometimes claimed. Among the four methods used for gel permeation chromatography (GPC), Universal calibration HDV method, not involving viscosity measurement, gave the best and most reproducible values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号