首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
循环利用化学试剂从磷石膏中提取SO_4~(2-)和Ca2+制备高纯硫酸钙,其中一个重要环节是用NaOH溶液分解磷石膏从中提取SO_4~(2-)得到Na_2SO_4溶液和Ca(OH)_2渣。在此过程中,热力学分析结果表明,磷石膏中的杂质主要进入Ca(OH)_2渣中,只有少量Si、Al杂质以Na_2SiO_3和KAlO_2的形式溶解进入Na_2SO_4溶液。通过绘制25℃下Na_2SO_4溶液中SiO_3~(2-)和AlO_2~-水解后各组分的热力学平衡图发现,采用控制Na_2SO_4溶液pH值的方法,可沉淀去除其中的Si、Al杂质。验证试验表明,硫酸钠溶液初始pH=13.20时,Al质量浓度为17.7 mg/L,Si质量浓度为53.41mg/L;将pH调至12左右时,溶液中已检测不出Al,Si去除率为8.48%;将pH调至7左右时,溶液中检测不出Al,Si去除率为75.89%。  相似文献   

2.
循环利用化学试剂从磷石膏中提取SO_4~(2-)和Ca~(2+)制备高纯硫酸钙的关键步骤是从双极膜电解除杂后的磷石膏分解液中提取SO_4~(2-)和Na~+,得到NaOH溶液和H_2SO_4溶液,用于循环制备高纯度硫酸钙。本研究对此过程中的电流密度和分解液浓度进行了单因素试验分析,在不同电流密度和磷石膏分解液浓度下,考察了磷石膏分解液的电解率、电解能耗以及电流效率的差异。试验结果表明:在电流密度为47.6mA/cm2,磷石膏分解液浓度为1.143mol/L时,电解率达到99.04%,能耗1.529kW·h/kg,电流效率为62.23%,此时能耗最低且效率最高,电解效果最佳。经分析可知,酸溶液中主要含H+和SO_4~(2-),硫酸浓度达到0.924 9mol/L;碱溶液中主要含Na+和OH-,也含有少量的K+,氢氧化钠(氢氧化钾)浓度达到2.125 7mol/L。酸碱溶液中几乎不含有其他杂质,可直接返回用于循环分解磷石膏。  相似文献   

3.
为高效利用磷石膏,以氢氧化钠分解磷石膏得到的钙渣为原料制备石膏晶须材料,试验利用盐酸从钙渣中提取钙,再用硫酸常压酸化法由氯化钙母液制备高纯硫酸钙晶须。结果表明:在硫酸用量nH2SO4/m钙渣=6mol/kg,反应温度90℃,反应时间60min,陈化时间60min,晶形助长剂MgCl2补加量为nCa2+/nMg2+=16∶1的条件下,制备得到平均长径比达到23~36、白度高于93%、纯度高达99.82%的石膏晶须产品。  相似文献   

4.
采用常压酸化法对磷石膏进行除杂和溶解,研究了除杂和溶解的最佳条件,以使磷石膏中的钙尽可能多地富集于溶解液中。浓缩溶解液,制得硫酸钙晶须。实验结果表明,硫酸溶解磷石膏的最佳条件为:1g磷石膏在70℃下放置于20mL质量分数为50%的硫酸中,溶解5h;盐酸溶解磷石膏的最佳条件为:1g固相在70℃下放置于30mL浓度为2mol/L盐酸中,溶解4h。制备得到的半水硫酸钙晶须的长径比约为20~80,产率达72.66%。  相似文献   

5.
一、试验目的及反应机理本试验目的是将我厂铬盐车间排出的含铬芒硝渣、钼精矿焙烧尾气中SO_2及石灰窑筛下石灰综合处理,生产市场上短缺产品海波(Na_2S_2O_3·5H_2O),主要反应如下:Na_2SO_4+CaO+S+SO_2=Na_2S_2O_3 +CaSO_4↓试验时先将芒硝渣加水(或用石膏洗水)制成硫酸钠溶液,然后加入石灰粉,硫磺粉消化,此时硫酸钠被石灰部分苛化成苛性钠,并产生一定量的硫化钠,然后再硫化合成硫代硫酸钠,与此同时溶液中的C_r~(+6)也被  相似文献   

6.
详细阐述了将磷石膏所转化的易溶硫酸盐溶液(如磷石膏与碳酸氢钠溶液发生复分解反应得到Na_2SO_4溶液)通过双极膜电渗析体系制备硫酸和相应的碱、同时联产轻质碳酸钙粉体的新工艺机理;对以硫铁矿、磺酸、冶炼气为原料制备硫酸工艺、磷石膏高温处理制硫酸等工艺进行了综合的比较与分析。进一步叙述了双极膜渗析技术处理磷石膏制备硫酸新工艺所存在的问题。针对此法制硫酸的新工艺做出相应的建议与展望,认为双极膜渗析技术处理磷石膏制备硫酸为磷石膏高效利用的新途径。  相似文献   

7.
周华锋  张肖肖  李响 《硅酸盐通报》2017,36(6):2090-2094
采用常压酸化法对磷石膏分别进行硫酸除杂和盐酸溶解,将磷石膏中的钙富集于溶解液中.再对溶液进行处理制备硫酸钙晶须,考察硫酸钙初始浓度、结晶温度及添加助晶剂种类和用量对硫酸钙晶须组成、结构和形貌的影响.实验结果表明:所制晶须均为二水硫酸钙晶须;以乙醇作为助晶剂所制备的晶须形貌最好.当乙醇的添加量为15 mL(即V乙醇∶V盐酸=1∶2)时所制备的晶须比较均一,平均直径为25 μm,平均长径比约为80.  相似文献   

8.
以磷石膏钙渣为原料,用盐酸浸取将其中的钙溶出,滤液经精制后合成制备轻质碳酸钙。探讨了初始反应温度、溶液浓度、CO2流量对轻质碳酸钙产品沉降体积的影响,并得到了优化工艺参数。结果表明,在最优工艺条件下制备的轻质碳酸钙产品粒径较细,分散性好,其沉降体积可达3.3 mL·g-1。该工艺条件对于磷石膏钙渣的资源化利用具有重要意义。  相似文献   

9.
固体或液体燃料在锅炉内燃烧,锅炉受热面和烟道上就会结灰和结渣,使传热恶化,排烟温度升高,热效率降低,能耗增加;严重时会引起烟道阻力增加,影响锅炉的正常运行,受热面结灰后还会加速管壁的腐蚀。近年来,国内少数化工厂生产一种锅炉除灰剂的药物,在实际应用中,收到一定的效果。除灰剂是由氯化钠(NaCl)、二氧化硅(SiO_2)、硼砂(Na_2B_4O_7)及锌粉(Zn)混合组成,呈红棕色粉状,碱性。起主要作用的成份是氯化钠,因锅炉结灰(渣)的成份是各种硫酸盐类,氯化钠与这些盐类反应的结果: CaSO_4 2NaCl(?)Na_2SO_4 CaCl_2 MgSO_4 2NaCl(?)Na_2SO_4 MgCl_2 K_2SO_4 2NaCl(?)Na_2SO_4 2KCl  相似文献   

10.
对磷石膏资源化利用进行研究。采用磷酸浸取磷精矿粉制备的磷酸二氢钙酸浸液和硫酸为主要原料制备半水石膏。将酸浸液升温除杂,加入总钙质量5%的半水石膏作为晶种,再加入n(H_2SO_4)/n(Ca~(2+))为0.9的硫酸,反应15 min,热过滤后用85℃以上热水洗涤石膏至pH不低于6,在105~110℃下干燥即可制得半水石膏。所得石膏直径10~30μm,长径比10~40,w(CaSO_4·0.5H_2O)约99.3%,符合建筑石膏标准,可替代优质天然石膏来制备建筑石膏。  相似文献   

11.
针对磷石膏资源化利用课题,开展了硫磺低温分解磷石膏制高浓度SO_2技术、氧化钙残渣的高值化利用技术及磷石膏制酸过程的系统集成及工程实施关键技术研究。硫磺分解磷石膏过程的动力学试验研究结果表明:一段反应温度为650℃,反应停留时间为1 h,反应产物可达到二段物料配比;二段反应温度为1 100℃,磷石膏分解率大于98%,系统脱硫率大于96%。氧化钙残渣配以铝矾土、磷石膏在1 250℃/60 min下可烧制成高品质的硫铝酸盐水泥熟料;采用氯化铵浸取脱硫钙渣碳酸化制备高纯度碳酸钙,残渣中钙浸取率为85.62%,硅脱除率达到95.30%,所得轻质碳酸钙产品纯度达98.90%,达到涂料用优等品指标要求。建立万吨级硫磺低温分解磷石膏制硫酸示范装置,实现了磷石膏转化率99%、分解温度为1 050℃、窑气φ(SO_2)高达12.2%的工艺指标。  相似文献   

12.
以钛石膏为原料、MgCl_2为晶型助长剂、常压酸化法制备硫酸钙晶须。用钛石膏纯化制备硫酸钙既会把钛石膏得到充分利用,创造价值,也会实现天然石膏资源的可持续发展,保护环境。要充分利用钛石膏就要对其纯化,除去含量较高的三氧化二铁杂质。常见方法是除去铁离子,但过程会复杂化,在此,通过沉淀溶解平衡将硫酸根离子直接沉淀出来,省去复杂的除杂步骤。目前,在生成硫酸钙晶须的理论中,溶解沉淀理论得到了大多数研究者的支持。沉淀溶解理论认为,生成硫酸钙晶须实质上是颗粒状的CaSO_4·2H_2O向纤维状的CaSO_4·1/2H_2O和CaSO_4转变的过程。该过程本质上是一个"溶解—结晶—脱水"的过程。  相似文献   

13.
钙芒硝中的主要组成为芒硝(Na_2SO_4) 及硫酸钙(CaSO_4) (见表1) 。对芒硝成分的确定,一般分析硫酸根或用火焰光度计测其钠量而计算出Na_2SO_4含量。对于纯制Na_2SO_4工艺控制中钠的检测,还没有比较简单、快速、准确、易行的方法。我们用三甘酰二苄胺为活性物质制成的PVC 膜钠离子选择电极,  相似文献   

14.
碳酸钡矿经盐酸浸提氯化钡以后,其高浓度工业钙水富含钙离子,经硫酸沉淀、洗涤、干燥后得到硫酸钙晶须。讨论了溶液中杂质离子、钙水浓度、硫酸浓度和反应温度对硫酸钙晶须形貌和长径比的影响。结果表明:必须对溶液中的杂质离子进行去除、CaCl_2浓度维持在0.4%、硫酸浓度在15%、反应温度在100℃左右较为合适。  相似文献   

15.
湿法磷酸生产过程副产大量磷石膏,因其含有较多杂质而无法直接利用,目前可采用硫酸酸浸处理提高磷石膏品质。为弄清酸浸过程中石膏的溶解性能和结晶形态的变化,本文探讨了在0~80 ℃、0~30%的硫酸浓度条件下,磷石膏在硫酸溶液中的溶解度大小、结晶形貌、物相组成及结晶水含量的变化情况。实验结果表明,磷石膏在硫酸溶液中的溶解度随温度升高而升高,在80 ℃时达最大;随浓度升高呈先升后降的变化,在硫酸浓度为10%时溶解度最大。硫酸浓度小于10%时,磷石膏中二水硫酸钙溶解,但无新相生成,其形貌变化不大;硫酸浓度大于10%时,二水硫酸钙溶解,同时再结晶转化成无水硫酸钙,最终导致磷石膏形貌和相态发生了改变,溶解度随硫酸浓度升高而降低。  相似文献   

16.
王家滨  牛荻涛 《硅酸盐学报》2019,47(8):1123-1136
盐渍土广泛分布于我国西北地区,其中含有高浓度的Mg~(2+),SO_4~(2–)及Cl~–,导致隧道衬砌结构耐久性能劣化。采用干湿交替法,以10%Na_2SO_4和5%Na_2SO_4+5%Mg SO_4+3.5%NaCl溶液为侵蚀介质,进行了喷射混凝土耐久性试验,以动弹性模量、质量及抗压强度为指标,分析了喷射混凝土耐久性退化规律。采用离子含量分析实验及X射线衍射、红外光谱、热分析、扫描电子显微镜等表征方法,研究了喷射混凝土耐久性退化机理及过程。结果表明:Mg SO_4–Na_2SO_4–NaCl侵蚀喷射混凝土耐久性能优于Na2SO4侵蚀。Mg SO_4-Na_2SO_4-NaCl侵蚀喷射混凝土pH值及Ca~(2+)含量高于Na_2SO_4侵蚀,而SO_4~(2–)含量低于硫酸盐侵蚀。Na_2SO_4侵蚀喷射混凝土耐久性退化过程分为钙矾石侵蚀、钙矾石/石膏共同侵蚀及石膏侵蚀3个阶段;Mg SO4–Na_2SO_4–NaCl侵蚀喷射混凝土耐久性退化过程分为水镁石/石膏/钙矾石侵蚀、水化硅酸钙分解及碳硫硅钙石形成、水化硅酸镁形成3个阶段。结晶盐形成并填充在喷射混凝土孔隙及微裂缝中,加速混凝土耐久性能退化。  相似文献   

17.
近两年内德意志民主共和国进行了副产磷石膏制酸和水泥的研究,最近并发表了有关操作数据。 生产过程:磷石膏制酸及水泥主要是硫酸钙和碳反应生或SO_2,其反应: CaSO_4+2C→CaS+2CO_2 (1) 3CaSO_4+CaS→4CaO+4SO_2 (2) 总反应: 4CaSO_4+2C→4CaO+4SO_2+2CO_2(3) 在窑内(1)式的适宜温度900℃,(2)式的温度为1200℃。外加粘土、砂和氧化铁反应生成水泥熟料。 砂及粘土在进入转窑之前必须进行干燥,而焦炭和氧化铁(硫铁矿渣)一般不  相似文献   

18.
介绍湖北三宁化工股份有限公司磷化工生产装置及资源循环利用情况。探讨磷化工生产全资源循环利用方案,包括利用新技术磷石膏制硫酸联产水泥,循环利用磷石膏中含磷废水,利用副产盐酸分解磷尾矿生产氢氧化镁、高纯硫酸钙和氯化铵镁复合肥,引进新技术用氟硅酸生产高活性氟化钾并联产白炭黑。一系列技术的研发与应用,使磷化工生产全资源循环利用有了实现的可能。  相似文献   

19.
研究了几种常见离子(NO_3~-、SO_2~(4-)、HCO_3~-、SiO_3~(2-)、Ca~(2+)和Mg~(2+))对2种解毒铬渣(600℃和800℃热解解毒)除磷效果的影响.结果表明,与纯水比较,NO_3~-(NaNO_3)和SO_4~(2-)(Na_2SO_4)的存在能提高解毒铬渣的磷去除率;HCO_3~-(NaHCO_3)和SiO_3~(2-)(Na_2SiO_3)会与水中的PO_4~(3-)竞争Ca~(2+)生成沉淀,从而对铬渣除磷起抑制作用;Ca~(2+)和Mg~(2+)的存在能够提高铬渣的除磷率.根据上述结果及水、污水中一般离子含量,初步分析认为对铬渣固磷影响最大的应该是Ca~(2+)、Mg~(2+)和HCO_3~-(CO_3~(2-))离子,前2者起促进作用,后者起抑制作用.  相似文献   

20.
本文研究了利用Na_2SO_4替代Na_2CO_3参与粗盐水精制的可行性。研究了Na_2SO_4加入量、灰乳及Na_2SO_4加入方式对除钙效果的影响;探讨了除镁盐水中Ca2+浓度对结疤的影响及CaSO_4结疤的消除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号