首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
分析基坑施工对临近隧道影响对保护隧道安全有重要意义.对于保护某地块临近地铁盾构隧道,地块地下室与隧道外边缘最小距离约为10.2m,采用有限元方法,建立基坑施工对盾构隧道影响的计算模型,分析了盾构管片和轨道结构位移变化特征.研究结果表明,基坑施工过程中,管片和轨道结构位移以向基坑方向的横向水平位移为主,竖向位移和纵向水平...  相似文献   

2.
为研究城际铁路某车站基坑开挖过程,以MIDAS/GTS有限元软件为基础,建立了某车站基坑开挖三维数字模型,采用修正Mohr-Coulomb模型模拟分层开挖过程,计算并分析了每层开挖对基坑土体和围护结构的影响。结果表明:基坑开挖过程中,会造成基坑周围土体沉降,基坑内底部土体隆起;基坑从第1层开挖至坑底,坑外土体最大沉降为0.21 mm,坑内土体最大隆起为3.99 mm。在基坑开挖至坑底时,围护结构的竖向位移和水平位移都最大,分别为0.13 mm(临近坑底隆起部分的围护)和0.64 mm。  相似文献   

3.
基坑开挖会对临近既有盾构隧道产生不利影响。分析了基坑开挖对临近既有隧道变形的影响机理,理论分析结果表明:基坑开挖卸载使隧道水平方向压力减小,导致隧道产生朝向基坑侧的水平方向位移;收敛变形仍呈"水平向拉伸、竖向压缩",但变形会加剧;首次提出基坑开挖深度决定了隧道竖向产生隆起或沉降;降水会使隧道产生下沉。收集了11项国内基坑工程实例,对实测数据进行了统计分析,结果表明:隧道最大水平位移值与隧道和基坑的净距离呈幂函数关系,提出了隧道最大水平位移值的经验公式,实测结果验证了影响机理理论分析的可靠性。  相似文献   

4.
地铁盾构隧道穿越既有铁路路基工程中会引起路基的沉降,使得轨道结构产生额外的不平顺.利用Plaxis三维有限元软件模拟盾构掘进引起的路基沉降曲线,并进一步分析了在该沉降曲线下铁路行车安全性及舒适性.结果表明,盾构掘进引起的路基沉降小于6mm,最大高低不平顺和水平不平顺分别为0.19mm和0.20mm,行车时造成的第一轮对脱轨系数为0.47、第一轮对轮重减载率为0.34,横向加速度为0.36m/s2,竖向加速度为0.32m/s2,故建议施工期间对铁路实行限速运营.  相似文献   

5.
新建基坑工程施工过程中,在确保基坑自身安全的同时,也要控制由于基坑施工引起的土体位移,保证邻近地铁的安全和正常运营。以北京某深基坑工程为例,应用数值模拟方法研究了深基坑开挖施工对既有地铁区间隧道及轨道结构的影响,研究结果表明:受基坑与隧道位置关系影响,基坑开挖对邻近地铁隧道及轨道结构的影响主要以朝向基坑方向的水平位移为主,对轨道几何形位的影响较小;隧道及轨道结构的水平及竖向位移、轨道的轨距及水平变化沿隧道轴线方向呈"一"字形均匀分布,随着施工步序变化的时程曲线呈勺状分布;当基坑侧壁与盾构隧道水平净距l2h(h为基坑开挖深度)时,基坑开挖对邻近地铁隧道及轨道结构的影响较小,可以2h为界限将基坑施工邻域分为强影响区和弱影响区;基坑支护结构采用双排桩时,较单排桩而言可明显降低基坑开挖对地铁隧道及轨道结构的影响,尤其可抑制隧道结构水平位移的发展。  相似文献   

6.
盾构隧道施工过程中,由于地层特性差异以及同步注浆工艺的影响,容易导致管片壁后同步注浆空洞的产生,此类缺陷对盾构隧道周围地层沉降及管片受力影响显著。文章依托工程实际,采用数值模拟方法分析了不同位置的空洞缺陷对地表沉降及管片变形的影响。结果表明:壁后注浆空洞无缺陷时,最大地表沉降、竖向收敛值、水平收敛值分别为4.98 mm、4.44 mm、-5.32 mm,而在出现空洞缺陷的情况中,拱顶的最大地表沉降、竖向收敛值、水平收敛值均为最小,分别为10.78 mm、13.52 mm、-16.23 mm,因此说明当出现空洞缺陷时,地表沉降和管片变形会受到很大不利影响。当空洞缺陷出现在隧道拱腰时,是所有空洞缺陷中引发地表沉降变形和盾构结构变形最大的情况,最大地表沉降、竖向收敛值、水平收敛值分别为18.81 mm、20.07 mm、-22.21 mm,比拱顶位置引起的变形分别大13.83 mm、15.63 mm、-16.89 mm。所以空洞缺陷位置出现在拱腰时对于结构力学特性和地表沉降最为不利。故在盾构隧道注浆施工过程中,应尽量保证隧道拱腰位置的壁后注浆填充率,使地表沉降及管片变形达到相应工程要求。  相似文献   

7.
王航 《土工基础》2019,(1):19-22
结合苏州地铁4号线北侧某建筑基坑开挖,用Midas GTS有限元分析软件对基坑施工过程进行计算模拟,分析基坑开挖对地铁4号线区间隧道的影响。结果表明:基坑开挖过程对地铁区间隧道影响最大,基坑回筑过程地铁区间隧道变形较小。基坑开挖过程中地铁区间隧道竖向最大沉降量为1.51 mm,隧道水平向最大位移为6.32 mm;建筑基坑开挖过程中地表沉降最大值为2.5 mm,基坑坑底隆起最大值为20.3 mm,最大值发生在开挖至坑底阶段;围护结构变形和受力满足设计要求。  相似文献   

8.
珠江三角洲城际快速轨道交通广州至佛山段,采用复合式土压平衡盾构对下穿隧道施工掘进过程进行研究,研究成果表明:通过数值模拟分析左、右线隧道开挖后,其拱部最大垂直位移和最大水平位移分别小于竖向位移、水平位移允许值,验证衬砌结构安全性。断面最大位移满足沉降要求,下穿珠江施工对环境影响较小。通过现场监测得出隧道开挖完成后,河床泥面最大位移以及拱顶沉降和洞径收敛值,远小于控制标准,单次沉降小于预警值,总体满足设计要求。  相似文献   

9.
基坑施工对邻近建筑物的影响一直是研究的热点问题,而盾构隧道结构对变形更为敏感,开挖施工对既有隧道的变形影响问题值得重点关注。选取杭州地区17个既有地铁盾构隧道的基坑工程实例,研究开挖施工对隧道结构的变形影响,分析基坑与隧道的水平净距、相对高差、开挖深度等空间参数对隧道变形的影响。研究结果表明:基坑开挖的卸荷作用会引起邻近隧道结构的附加变形,且水平位移通常大于竖向位移;隧道的变形影响随着与基坑的水平净距增大而呈非线性递减;隧道的竖向位移随基坑开挖深度增加而线性增大,且不同开挖深度的敏感性不同。研究成果对类似地区的地铁隧道保护工作具有一定的参考意义。  相似文献   

10.
为了更加深入地分析基坑开挖过程对周围环境与构筑物的影响,本文结合广州琶洲港澳客运口岸项目基坑工程,通过使用midas GTS/NX软件模拟计算基坑工程施工过程中基坑底部在建地铁盾构隧道、邻近有轨电车的结构位移,评估基坑工程在各施工工况下有轨电车、盾构隧道结构的安全状态.有轨电车道床结构、盾构隧道结构水平、竖向位移极值各...  相似文献   

11.
以武汉新建轨道交通12号线盾构区间下穿既有2号线长~汉盾构区间为工程背景,采用三维数值模拟分析新建线路施工对既有轨道交通变形的影响。研究结果表明:盾构掘进施工对既有结构及线路影响较小,盾构隧道贯通后区间结构最大竖向位移为–4.96 mm,最大水平位移为0.309 mm,2号线盾构区间累计最大沉降量为–2.86 mm,区间结构变形量和沉降量在相关规范控制范围内,满足区间安全运营要求。通过设计上加强管片配筋、增加注浆孔,隧道施工中加强掘进参数控制和及时同步注浆,加强二次注浆,同时对2号线长港路站—汉口火车站区间设置监测点,指导施工,保证地铁安全运营。  相似文献   

12.
依托临近地铁车站和区间隧道的深基坑工程,以深层土体位移、地面沉降、地下水位变化及支撑轴力为研究对象,分析了分区施工下基坑变形及受力特性;以距离基坑最近的1号线上行线竖向位移、差异沉降、水平位移及收敛为研究对象,分析了基坑施工对临近地铁结构的影响规律;采用统计方法,分析了1号线上行线盾构裂缝的空间分布特征和长度、宽度及收敛值等裂缝尺寸特征。研究结果表明:Ⅱ基坑外侧深层土体位移和地下水位变化小于Ⅰ基坑外侧,分区施工控制效果明显;Ⅰ基坑地下结构施工期间有中断,在软土流变效应作用下,基坑和隧道监测结果变化较大,导致收敛超过了控制要求,对隧道安全造成了影响;Ⅱ基坑支撑轴力大于同道的Ⅰ基坑支撑轴力,支撑轴力随其所处深度增大而增大;盾构隧道裂缝发生在上半部分,且有明显的集中效应,主要发生在12点钟位置;Ⅱ基坑施工后裂缝宽度主要在0.6mm以下,收敛主要在6mm以上,多数裂缝呈贯通特征。研究结论可为类似条件下的工程提供借鉴与参考。  相似文献   

13.
姚俊  董鑫  何亮 《江苏建筑》2022,(1):94-97
为了研究复杂条件下的基坑开挖对周围环境产生的影响,使用Midas GTS NX有限元软件建立三维数值模型,分析常州历史文化街区一基坑开挖对土体、围护结构及临近地铁隧道的影响。结果表明:基坑开挖存在明显的空间效应,阴角利于基坑稳定;开挖后坑内土体隆起,坑外土体沉降;地铁隧道在竖向主要表现为隆起,水平向主要表现为朝向基坑方向发生位移;隧道竖向位移和水平位移均与基坑范围存在明显对应关系,在基坑范围内的隧道变形最大;隧道整体在竖向表现为收缩变形,水平向表现为扩张变形。  相似文献   

14.
霍永鹏 《山西建筑》2024,(7):154-156+181
为了给涉铁工程的设计施工提供参考,基于北京市某电力隧道下穿丰沙铁路U型槽结构的工程案例,建立“土体-U型槽结构-电力隧道”三维数值模型,计算并分析新建电力隧道施工对既有铁路轨道及U型槽结构的变形影响,研究表明铁路轨道沉降最大值为-3.592 mm,水平位移最大值为3.496 mm; U型槽沉降最大值为-3.974 mm,水平位移最大值为4.142 mm,可满足安全要求,并进一步提出必要的工程措施建议。  相似文献   

15.
以沈阳某盾构法综合管廊隧道下穿在建盖挖顺做法基坑为工程实例,在对工程实测数据进行分析基础上,利用小应变硬化本构模型进行三维有限元数值模拟研究,分析了盾构隧道下穿在建基坑引发的围护结构位移、水平支撑变形和基坑内既有结构变形。研究表明,利用小应变硬化本构模型可对盾构隧道下穿在建基坑问题进行较好的模拟;盾构隧道下穿基坑将引发围护结构顶部产生差异沉降;基坑内已施工完成的结构和水平支撑将发生"两边沉降大,中间沉降小"的上凸型变形;合理设计的立柱可有效控制盾构下穿引发的水平支撑沉降。  相似文献   

16.
地铁盾构隧道下穿既有高铁线路,由地层损失引起地表沉降,对高铁桥梁桩基产生不利影响。本文根据国内地铁隧道下穿既有铁路的相关实例,总结隧道下穿后对既有铁路轨面沉降、钢轨高差、轨距等指标控制限值。结合国内某城市盾构隧道下穿铁路的实际工程,采用有限元数值模拟方法,研究盾构下穿前采用隔离桩防护措施对高铁桥桩变形的影响。结果表明,合理的隔离桩防护结构能够有效减小墩台竖向沉降和水平位移,能满足高速铁路线的轨道控制限值要求,并提出盾构近距离下穿高铁桩基的施工控制措施。  相似文献   

17.
本文通过现场实测数据分析了大型基坑分区开挖对临近地铁车站以及车站两端盾构隧道竖向和水平向变形的影响。分析结果表明:受邻近基坑开挖卸荷的影响,在竖直方向车站产生了隆起变形,盾构隧道受地质条件差异和施工参数的影响,既有沉降也有隆起;在水平方向车站和隧道均朝向基坑移动;流变对车站和隧道竖向变形影响较大,因流变而产生的竖向变形可占总变形的50%;分区开挖由于可以充分利用中隔墙对基坑变形的约束,以及时空效应对变形的影响,因此可以有效地减小基坑开挖对邻近地铁变形的影响。  相似文献   

18.
隧道下穿建筑物时,注浆加固过程可能会对建筑物桩基产生不利影响。文中依托深圳某盾构隧道下穿建筑物注浆加固项目,通过PLAXIS 3D有限元软件模拟了袖阀管注浆过程对桩基产生的影响。结果表明桩的水平位移随注浆压力增大而增大,但桩的竖向位移随注浆压力增大而减小;注浆过程对土体扰动后,建筑物周边棱角处出现最大沉降,其值为2.5mm,桩的最大沉降为2.32mm。  相似文献   

19.
纵向穿越软硬突变地层的盾构隧道在外部施工因素影响下极易产生不均匀沉降,从而诱发管片环间错台、螺栓剪断和接缝渗漏水等病害。为进一步研究外部因素对其竖向位移的影响,基于Winkler弹性地基梁理论推导任意荷载作用下隧道竖向位移公式,结合Boussinesq解采用两段分析法分析地面堆载大小、尺寸以及隧道埋深对盾构隧道竖向位移规律的影响。以厦门地铁2号线某区间为工程实例,验证理论公式的合理性。研究结果表明:在地面堆载作用下,隧道竖向位移曲线多数服从正态曲线分布,且软土区盾构隧道竖向位移普遍大于硬土区;堆载长度对最大竖向位移的影响有限,当堆载长度超过一定界限时,最大竖向位移不再增大,但其范围会随之扩大;当堆载宽度超过一定限度时,竖向位移曲线基本不再发生变化;当埋深较浅时,软硬土交界处盾构隧道两侧竖向位移差异不大,随着埋深的增大,隧道最大竖向位移逐渐向软土区偏移。研究结果可为纵向穿越软硬突变土层地铁盾构隧道的设计提供参考依据。  相似文献   

20.
沿海区域存在大量淤泥土层,其通常表现出高压缩性、流变性及触变性等不良工程地质性质。因此,深厚淤泥土深长基坑开挖面临着极高施工风险,对周边环境的影响显著。为进一步阐明深厚淤泥土深长基坑开挖施工力学效应,依托某深基坑工程,通过有限元三维数值模拟,揭示了淤泥土深长基坑开挖对邻近建筑的影响规律。结果表明:深厚淤泥土层的存在使基坑开挖影响区的水平影响区域明显增大,竖向影响区域所受影响较小,在水平距离150 m、深度85 m范围内土体皆受基坑开挖影响;基坑以及建筑轮廓凹凸部出现应力集中,在淤泥土层,地连墙以及既有隧道墙板应力集中处的水平位移存在明显突变;既有隧道水平位移和沉降曲线呈“中间大,两头小”的特征;大桥变形随开挖深度增加而变大,桥桩在淤泥土层的水平位移明显增大,最大水平位移达5.33 mm,最大沉降达9.92 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号