首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Fourier equivalent model is introduced to research the thermal transfer behavior of a terminating-type MEMS microwave power sensor.The fabrication of this MEMS microwave power sensor is compatible with the GaAs MMIC process.Based on the Fourier equivalent model,the relationship between the sensitivity of a MEMS microwave power sensor and the length of thermopile is studied in particular.The power sensor is measured with an input power from 1 to 100 mW at 10 GHz,and the measurement results show that the power sensor has good input match characteristics and high linearity.The sensitivity calculated from a Fourier equivalent model is about 0.12,0.20 and 0.29 mV/mW with the length at 40,70 and 100μm,respectively,while the sensitivity of the measurement results is about 0.10,0.22 and 0.30 mV/mW,respectively,and the differences are below 0.02 mV/mW. The sensitivity expression based on the Fourier equivalent model is verified by the measurement results.  相似文献   

2.
An optical micro electron mechanical system (MEMS) pressure sensor with a mesa membrane is presented. The operating principle of the MEMS pressure sensor is expatiated by the Fabry-Perot (F-P) interference and the relation between deflection and pressure is analyzed. Both the mechanical model of the mesa structure diaphragm and the signal averaging effect is validated by simulation, which declares that the mesa structure diaphragm is superior to the planar one on the parallelism and can reduce the signal averaging effect. Experimental results demonstrate that the mesa structure sensor has a reasonable linearity and sensitivity.  相似文献   

3.
终端式MEMS微波功率传感器的设计与制作   总被引:1,自引:1,他引:0  
许映林  廖小平 《半导体学报》2009,30(4):044010-4
A terminating type MEMS microwave power sensor based on the Seebeck effect and compatible with the GaAs MMIC process is presented. An electrothermal model is introduced to simulate the heat transfer behavior and temperature distribution. The sensor measured the microwave power from –20 to 20 dBm up to 20 GHz. The sensitivity of the sensor is 0.27 mV/mW at 20 GHz, and the input return loss is less than –26 dB over the entire experiment frequency range. In order to improve the sensitivity, four different types of coplanar waveguide (CPW) were designed and the sensitivity was significantly increased by about a factor of 2.  相似文献   

4.
With the required increased audio pressure of the parametric ultrasonic transducer array and the difficulty to theoretically analyse the complex ultrasonic structure in audio beam application, an computationally efficient model is desired to describe the characteristic of the parametric ultrasonic transducer array for the system design and optimization. By applying the symmetry boundary conditions at the mid-plane in the thickness direction, a finite element model based on the haft thickness simplification is presented to analyze the parametric circular transducer which is designed by gluing the poly Vinylidene fluoride film (PVDF). The validity of the proposed model is confn'med by a comparison of finite element analysis results with the theoretical value and experimental data, which show that they are making a good agreement with each other.  相似文献   

5.
A biomimetic three-dimensional piezoresistive vibration sensor based on MEMS technology is reported.The mechanical properties of the sensor are analyzed and the static and dynamic characteristics of the sensor are simulated by ANSYS Workbench12.0.The structure was made by MEMS processes including lithography,ion implantation,PECVD,etching,etc.Finally,the sensor is tested by using a TV5220 sensor auto calibration system.The results show that the lowest sensitivity of the sensor is 394.7 V/g and can reach up to 460.2 V/g,and the dimension coupling is less than 0.6152%,and the working frequency range is 0–1000 Hz.  相似文献   

6.
A wideband 8-12 GHz inline type microwave power sensor,which has both working and non-working states,is presented.The power sensor measures the microwave power coupled from a CPW line by a MEMS membrane.In order to reduce microwave losses during the non-working state,a new structure of working state transfer switches is proposed to realize the two working states.The fabrication of the power sensor with two working states is compatible with the GaAs MMIC(monolithic microwave integrated circuit) process.The experimental results show that the power sensor has an insertion loss of 0.18 dB during the non-working state and 0.24 dB during the working state at a frequency of 10 GHz.This means that no microwave power has been coupled from the CPW line during the non-working state.  相似文献   

7.
A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.  相似文献   

8.
苏适  廖小平 《半导体学报》2009,30(5):054004-4
This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43μV/mW, while the reflection loss is below -14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage.  相似文献   

9.
Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors (R1, R2, R3 and R4) locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator (SOI) wafer by micro electromechanical system (MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity (TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/℃, respectively. Through varying the ratio of the base region resistances r1 and r2, the TCS for the sensor with the compensation circuit is -127 ppm/℃. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor.  相似文献   

10.
The motor's configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement principle for the motor is proved by experiments. The pulse waveforms are applied to drive the motor to move in steps. The motor has a displacement resolution of 10 nm and a maximum velocity of 0.6 mm/ s. It can drive a 200 g slider whose range is 20 mm. A one-dimensional precision positioning platform is fabricated by using the new hybrid piezoelectric motor. The prototype is made up of two servomotors and two piezoelectric motors, which are controlled automatically by a computer. The positioning range of the platform is 10 cm.  相似文献   

11.
DUV lithography, using the 248 nm wavelength, is a viable manufacturing option for devices with features at 130 nm and less. Given the low kl value of the lithography, integrated process development is a necessary method for achieving acceptable process latitude. The application of assist features for rule based OPC requires the simultaneous optimization of the mask, illumination optics and the resist.Described in this paper are the details involved in optimizing each of these aspects for line and space imaging.A reference pitch is first chosen to determine how the optics will be set. The ideal sigma setting is determined by a simple geometrically derived expression. The inner and outer machine settings are determined, in turn,with the simulation of a figure of merit. The maximum value of the response surface of this FOM occurs at the optimal sigma settings. Experimental confirmation of this is shown in the paper.Assist features are used to modify the aerial image of the more isolated images on the mask. The effect that the diffraction of the scattering bars (SBs) has on the image intensity distribution is explained. Rules for determining the size and placement of SBs are also given.Resist is optimized for use with off-axis illumination and assist features. A general explanation of the material' s effect is discussed along with the affect on the through-pitch bias. The paper culminates with the showing of the lithographic results from the fully optimized system.  相似文献   

12.
From its emergence in the late 1980s as a lower cost alternative to early EEPROM technologies, flash memory has evolved to higher densities and speedsand rapidly growing acceptance in mobile applications.In the process, flash memory devices have placed increased test requirements on manufacturers. Today, as flash device test grows in importance in China, manufacturers face growing pressure for reduced cost-oftest, increased throughput and greater return on investment for test equipment. At the same time, the move to integrated flash packages for contactless smart card applications adds a significant further challenge to manufacturers seeking rapid, low-cost test.  相似文献   

13.
The relation between the power of the Brillouin signal and the strain is one of the bases of the distributed fiber sensors of temperature and strain. The coefficient of the Bfillouin gain can be changed by the temperature and the strain that will affect the power of the Brillouin scattering. The relation between the change of the Brillouin gain coefficient and the strain is thought to be linear by many researchers. However, it is not always linear based on the theoretical analysis and numerical simulation. Therefore, errors will be caused if the relation between the change of the Brillouin gain coefficient and the strain is regarded as to be linear approximately for measuring the temperature and the strain. For this reason, the influence of the parameters on the Brillouin gain coefficient is proposed through theoretical analysis and numerical simulation.  相似文献   

14.
The parallel thinning algorithm with two subiterations is improved in this paper. By analyzing the notions of connected components and passes, a conclusion is drawn that the number of passes and the number of eight-connected components are equal. Then the expression of the number of eight-connected components is obtained which replaces the old one in the algorithm. And a reserving condition is proposed by experiments, which alleviates the excess deletion where a diagonal line and a beeline intersect. The experimental results demonstrate that the thinned curve is almost located in the middle of the original curve connectivelv with single pixel width and the processing speed is high.  相似文献   

15.
Today, micro-system technology and the development of new MEMS (Micro-Electro-Mechanical Systems) are emerging rapidly. In order for this development to become a success in the long run, measurement systems have to ensure product quality. Most often, MEMS have to be tested by means of functionality or destructive tests. One reason for this is that there are no suitable systems or sensing probes available which can be used for the measurement of quasi inaccessible features like small holes or cavities. We present a measurement system that could be used for these kinds of measurements. The system combines a fiber optical, miniaturized sensing probe with low-coherence interferometry, so that absolute distance measurements with nanometer accuracy are possible.  相似文献   

16.
Waveguide multilayer optical card (WMOC) is a novel storage device of three-dimensional optical information. An advanced readout system fitting for the WMOC is introduced in this paper. The hardware mainly consists of the light source for reading, WMOC, motorized stages addressing unit, microscope imaging unit, CCD detecting unit and PC controlling & processing unit. The movement of the precision motorized stage is controlled by the computer through Visual Basic (VB) language in software. A control panel is also designed to get the layer address and the page address through which the position of the motorized stages can be changed. The WMOC readout system is easy to manage and the readout result is directly displayed on computer monitor.  相似文献   

17.
This paper presents a new method to increase the waveguide coupling efficiency in hybrid silicon lasers. We find that the propagation constant of the InGaAsP emitting layer can be equal to that of the Si resonant layer through improving the design size of the InP waveguide. The coupling power achieves 42% of the total power in the hybrid lasers when the thickness of the bonding layer is 100 nm. Our result is very close to 50% of the total power reported by Intel when the thickness of the thin bonding layer is less than 5 nm. Therefore, our invariable coupling power technique is simpler than Intel's.  相似文献   

18.
The collinearly phase-matching condition of terahertz-wave generation via difference frequency mixed in GaAs and InP is theoretically studied. In collinear phase-matching, the optimum phase-matching wave hands of these two crystals are calculated. The optimum phase-matching wave bands in GaAs and lnP are 0.95-1.38μm and 0.7-0.96μm respectively. The influence of the wavelength choice of the pump wave on the coherent length in THz-wave tuning is also discussed. The influence of the temperature alteration on the phase-matching and the temperature tuning properties in GaAs crystal are calculated and analyzed. It can serve for the following experiments as a theoretical evidence and a reference as well.  相似文献   

19.
Composition dependence of bulk and surface phonon-polaritons in ternary mixed crystals are studied in the framework of the modified random-element-isodisplacement model and the Bom-Huang approximation. The numerical results for Several Ⅱ - Ⅵ and Ⅲ- Ⅴ compound systems are performed, and the polariton frequencies as functions of the compositions for ternary mixed crystals AlxGa1-xAs, GaPxAS1-x, ZnSxSe1-x, GaAsxSb1-x, GaxIn1-xP, and ZnxCd1-xS as examples are given and discussed. The results show that the dependence of the energies of two branches of bulk phonon-polaritons which have phonon-like characteristics, and surface phonon-polaritons on the compositions of ternary mixed crystals are nonlinear and different from those of the corresponding binary systems.  相似文献   

20.
An insert layer structure organic electroluminescent device(OLED) based on a new luminescent material (Zn(salen)) is fabricated. The configuration of the device is ITO/CuPc/NPD/Zn(salen)/Liq/LiF/A1/CuPc/NPD/Zn(salen)/Liq/LiF/A1. Effective insert electrode layers comprising LiF(1nm)/Al(5 nm) are used as a single semitransparent mirror, and bilayer cathode LiF(1 nm)/A1(100 nm) is used as a reflecting mirror. The two mirrors form a Fabry-Perot microcavity and two emissive units. The maximum brightness and luminous efficiency reach 674 cd/m^2 and 2.652 cd/A, respectively, which are 2.1 and 3.7 times higher than the conventional device, respectively. The superior brightness and luminous efficiency over conventional single-unit devices are attributed to microcavity effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号