首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gordon HR  Du T  Zhang T 《Applied optics》1997,36(33):8670-8684
Current atmospheric correction and aerosol retrieval algorithms for ocean color sensors use measurements of the top-of-the-atmosphere reflectance in the near infrared, where the contribution from the ocean is known for case 1 waters, to assess the aerosol optical properties. Such measurements are incapable of distinguishing between weakly and strongly absorbing aerosols, and the atmospheric correction and aerosol retrieval algorithms fail if the incorrect absorption properties of the aerosol are assumed. We present an algorithm that appears promising for the retrieval of in-water biophysical properties and aerosol optical properties in atmospheres containing both weakly and strongly absorbing aerosols. By using the entire spectrum available to most ocean color instruments (412-865 nm), we simultaneously recover the ocean's bio-optical properties and a set of aerosol models that best describes the aerosol optical properties. The algorithm is applied to simulated situations that are likely to occur off the U.S. East Coast in summer when the aerosols could be of the locally generated weakly absorbing Maritime type or of the pollution-generated strongly absorbing urban-type transported over the ocean by the winds. The simulations show that the algorithm behaves well in an atmosphere with either weakly or strongly absorbing aerosol. The algorithm successfully identifies absorbing aerosols and provides close values for the aerosol optical thickness. It also provides excellent retrievals of the ocean bio-optical properties. The algorithm uses a bio-optical model of case 1 waters and a set of aerosol models for its operation. The relevant parameters of both the ocean and atmosphere are systematically varied to find the best (in a rms sense) fit to the measured top-of-the-atmosphere spectral reflectance. Examples are provided that show the algorithm's performance in the presence of errors, e.g., error in the contribution from whitecaps and error in radiometric calibration.  相似文献   

2.
Antoine D  Morel A 《Applied optics》1998,37(12):2245-2259
Single and multiple scattering by molecules or by atmospheric aerosols only (homogeneous scattering), and heterogeneous scattering by aerosols and molecules, are recorded in Monte Carlo simulations. It is shown that heterogeneous scattering (1) always contributes significantly to the path reflectance (rho(path)), (2) is realized at the expense of homogeneous scattering, (3) decreases when aerosols are absorbing, and (4) introduces deviations in the spectral dependencies of reflectances compared with the Rayleigh exponent and the aerosol angstrom exponent. The ratio of rho(path) to the Rayleigh reflectance for an aerosol-free atmosphere is linearly related to the aerosol optical thickness. This result provides a basis for a new scheme for atmospheric correction of remotely sensed ocean color observations.  相似文献   

3.
Wang M 《Applied optics》2006,45(35):8951-8963
The current ocean color data processing system for the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the moderate resolution imaging spectroradiometer (MODIS) uses the Rayleigh lookup tables that were generated using the vector radiative transfer theory with inclusion of the polarization effects. The polarization effects, however, are not accounted for in the aerosol lookup tables for the ocean color data processing. I describe a study of the aerosol polarization effects on the atmospheric correction and aerosol retrieval algorithms in the ocean color remote sensing. Using an efficient method for the multiple vector radiative transfer computations, aerosol lookup tables that include polarization effects are generated. Simulations have been carried out to evaluate the aerosol polarization effects on the derived ocean color and aerosol products for all possible solar-sensor geometries and the various aerosol optical properties. Furthermore, the new aerosol lookup tables have been implemented in the SeaWiFS data processing system and extensively tested and evaluated with SeaWiFS regional and global measurements. Results show that in open oceans (maritime environment), the aerosol polarization effects on the ocean color and aerosol products are usually negligible, while there are some noticeable effects on the derived products in the coastal regions with nonmaritime aerosols.  相似文献   

4.
The vertical distribution of absorbing aerosols affects the reflectance of the ocean-atmosphere system. The effect, due to the coupling between molecular scattering and aerosol absorption, is important in the visible, especially in the blue, where molecular scattering is effective, and becomes negligible in the near infrared. It increases with increasing Sun and view zenith angles and aerosol optical thickness and with decreasing scattering albedo but is practically independent of wind speed. Relative differences between the top of the atmosphere reflectance simulated with distinct vertical distributions may reach approximately 10% or even 20%, depending on aerosol absorption. In atmospheric correction algorithms, the differences are directly translated into errors on the retrieved water reflectance. These errors may reach values well above the 5x10(-4) requirement in the blue, even for small aerosol optical thickness, preventing accurate retrieval of chlorophyll-a [Chl-a] concentration. Estimating aerosol scale height or altitude from measurements in the oxygen A band, possible with the polarization and directionality of the Earth's reflectance instrument and medium resolution imaging spectrometer, is expected to improve significantly the accuracy of the water reflectance retrievals and yield acceptable [Chl-a] concentration estimates in the presence of absorbing aerosols.  相似文献   

5.
Wang M  Gordon HR 《Applied optics》1995,34(30):6989-7001
We report the results of simulations in which an algorithm developed for estimation of aerosol optical properties from the angular distribution of radiance exiting the top of the atmosphere over the oceans [Appl. Opt. 33, 4042 (1994)] is combined with a technique for carrying out radiative transfer computations by synthesis of the radiance produced by individual components of the aerosol-size distribution [Appl. Opt. 33, 7088 (1994)], to estimate the aerosol-size distribution by retrieval of the total aerosol optical thickness and the mixing ratios for a set of candidate component aerosol-size distributions. The simulations suggest that in situations in which the true size-refractive-index distribution can actually be synthesized from a combination of the candidate components, excellent retrievals of the aerosol optical thickness and the component mixing ratios are possible. An exception is the presence of strongly absorbing aerosols. The angular distribution of radiance in a single spectral band does not appear to contain sufficient information to separate weakly from strongly absorbing aerosols. However, when two spectral bands are used in the algorithm, retrievals in the case of strongly absorbing aerosols are improved. When pseudodata were simulated with an aerosol-size distribution that differed in functional form from the candidate components, excellent retrievals were still obtained as long as the refractive indices of the actual aerosol model and the candidate components were similar. This underscores the importance of component candidates having realistic indices of refraction in the various size ranges for application of the method. The examples presented all focus on the multiangle imaging spectroradiometer; however, the results should be as valid for data obtained by the use of high-altitude airborne sensors.  相似文献   

6.
The assumption that values of water-leaving radiance in the near-infrared (NIR) are negligible enable aerosol radiative properties to be easily determined in the correction of satellite ocean color imagery. This is referred to as the black pixel assumption. We examine the implications of the black pixel assumption using a simple bio-optical model for the NIR water-leaving reflectance [rho(w)(lambda(NIR))](N). In productive waters [chlorophyll (Chl) concentration >2 mg m(-3)], estimates of [rho(w)(lambda(NIR))](N) are several orders of magnitude larger than those expected for pure seawater. These large values of [rho(w)(lambda(NIR))](N) result in an overcorrection of atmospheric effects for retrievals of water-leaving reflectance that are most pronounced in the violet and blue spectral region. The overcorrection increases dramatically with Chl, reducing the true water-leaving radiance by roughly 75% when Chl is equal to 5 mg m(-3). Relaxing the black pixel assumption in the correction of Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite ocean color imagery provides significant improvements in Chl and water-leaving reflectance retrievals when Chl values are greater than 2 mg m(-3). Improvements in the present modeling of [rho(w)(lambda(NIR))](N) are considered, particularly for turbid coastal waters. However, this research shows that the effects of nonzero NIR reflectance must be included in the correction of satellite ocean color imagery.  相似文献   

7.
Wang M 《Applied optics》2007,46(9):1535-1547
In the remote sensing of the ocean near-surface properties, it is essential to derive accurate water-leaving radiance spectra through the process of the atmospheric correction. The atmospheric correction algorithm for Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) uses two near-infrared (NIR) bands at 765 and 865 nm (748 and 869 nm for MODIS) for retrieval of aerosol properties with assumption of the black ocean at the NIR wavelengths. Modifications are implemented to account for some of the NIR ocean contributions for the productive but not very turbid waters. For turbid waters in the coastal regions, however, the ocean could have significant contributions in the NIR, leading to significant errors in the satellite-derived ocean water-leaving radiances. For the shortwave infrared (SWIR) wavelengths (approximately > 1000 nm), water has significantly larger absorption than those for the NIR bands. Thus the black ocean assumption at the SWIR bands is generally valid for turbid waters. In addition, for future sensors, it is also useful to include the UV bands to better quantify the ocean organic and inorganic materials, as well as for help in atmospheric correction. Simulations are carried out to evaluate the performance of atmospheric correction for nonabsorbing and weakly absorbing aerosols using the NIR bands and various combinations of the SWIR bands for deriving the water-leaving radiances at the UV (340 nm) and visible wavelengths. Simulations show that atmospheric correction using the SWIR bands can generally produce results comparable to atmospheric correction using the NIR bands. In particular, the water-leaving radiance at the UV band (340 nm) can also be derived accurately. The results from a sensitivity study for the required sensor noise equivalent reflectance, (NE Delta rho), [or the signal-to-noise ratio (SNR)] for the NIR and SWIR bands are provided and discussed.  相似文献   

8.
Wang M  Gordon HR 《Applied optics》1994,33(18):4042-4057
The multiangle imaging spectroradiometer (MISR) scheduled to be flown on the first platform of the Earth Observing System in 1998 provides an opportunity to enhance considerably the accuracy with which aerosol properties over the ocean can be retrieved through passive sensing from Earth orbit. As opposed to most radiometers in space that scan the earth in a plane normal to the subsatellite path, the MISR will scan the earth simultaneously in nine planes and thus provide the radiance exiting the atmosphere over a given pixel in nine different directions and at four wavelengths. We examine the problem of extracting the aerosol optical thickness (τ(a)) over the oceans from MISR data, and we produce two algorithms, a single-band algorithm and a spectral or two-band algorithm, for deriving τ(a). The algorithms are based on the use of realistic aerosol models as candidates on which to base an estimation of the aerosol optical properties. They take into account all orders of multiple scattering. Simulations suggest that for nonabsorbing or mildly absorbing aerosol (single-scattering albedo ω(a) > 0.90) the error in the recovered τ(a) is ? 10%, as long as the candidate models adequately cover the size refractive index distribution range of the expected aerosols. In the special case of a strongly absorbing aerosol (ω(a) ? 0.75), the error in τ(a) becomes large; however, the combination ω(a)τ(a) (the scattering optical thickness) can still be recovered with an error of ? 20%, although it is always underestimated. The reason for this decrease in accuracy is that multiple-scattering effects are a strong function of ω(a). A simple extension of the two-band algorithm permits the retrieval of the aerosol scattering phase function with surprising accuracy.  相似文献   

9.
Ground-based sunphotometer observation of direct and scattered solar radiation is a traditional tool for providing data on aerosol optical properties. Spectral transmission and solar aureole measurements provide an optical source of aerosol information, which can be inverted for retrieval of microphysical properties (particle size distribution and refractive index). However, to infer these aerosol properties from ground-based remote-sensing measurements, special numerical inversion methods should be developed and applied. We propose two improvements to the existing inversion techniques employed to derive aerosol microphysical properties from combined atmospheric transmission and solar aureole measurements. First, the aerosol refractive index is directly included in the inversion procedure and is retrieved simultaneously with the particle size spectra. Second, we allow for real or effective instrumental pointing errors by including a correction factor for scattering angle errors as a retrieved inversion parameter. The inversion technique is validated by numerical simulations and applied to field data. It is shown that ground-based sunphotometer measurements enable one to derive the real part of the aerosol refractive index with an absolute error of 0.03-0.05 and to distinguish roughly between weakly and strongly absorbing aerosols. The aureole angular observation scheme can be refined with an absolute accuracy of 0.15-0.19 deg. Offset corrections to the scattering angle error are generally found to be small and consistently of the order of -0.17. This error magnitude is deduced to be due primarily to nonlinear field-of-view averaging effects rather than to instrumental errors.  相似文献   

10.
Gordon HR 《Applied optics》2003,42(3):542-4; discussion 545-9
The Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) experience suggests that in most situations the aerosol models presently in use for atmospheric correction of ocean color imagery are sufficient for this task. It has been shown [Appl. Opt. 41, 412 (2002)] that the top-of-atmosphere reflectances computed for more realistic aerosol models differ from those computed for presently used models but have not shown that they will yield a better atmospheric correction, e.g., through direct application to ocean color imagery. Thus they provide no evidence that the presently used aerosol models are inadequate, or that their use is a pitfall in atmospheric correction.  相似文献   

11.
Oo M  Vargas M  Gilerson A  Gross B  Moshary F  Ahmed S 《Applied optics》2008,47(21):3846-3859
The recently developed short wave infrared (SWIR) atmospheric correction algorithm for ocean color retrieval uses long wavelength channels to retrieve atmospheric parameters to avoid bright pixel contamination. However, this retrieval is highly sensitive to errors in the aerosol model, which is magnified by the higher variability of aerosols observed over urban coastal areas. While adding extra regional aerosol models into the retrieval lookup tables would tend to increase retrieval error since these models are hard to distinguish in the IR, we explore the possibility that for highly productive waters with high colored dissolved organic matter, an estimate of the 412 nm channel water-leaving reflectance can be used to constrain the aerosol model retrieval and improve the water-leaving reflectance retrieval. Simulations show that this constraint is particularly useful where aerosol diversity is significant. To assess this algorithm we compare our retrievals with the operational SeaWiFS Data Analysis System (SeaDAS) SWIR and near infrared retrievals using in situ validation data in the Chesapeake Bay and show that, especially for absorbing aerosols, significant improvement is obtained. Further insight is also obtained by the intercomparison of retrieved remote sensing reflectance images at 443 and 551 nm, which demonstrates the removal of anomalous artifacts in the operational SeaDAS retrieval.  相似文献   

12.
Gordon [Appl. Opt. 42, 542 (2003)] argues that use of external rather than internal mixing when aerosol optical properties are computed will not seriously affect atmospheric correction of ocean color imagery, in spite of the fact that top of the atmosphere reflectances computed with the two approaches differ significantly as shown by Yan et al. [Appl. Opt. 41, 412 (2002)]. We apply an algorithm for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations to demonstrate that use of the internal-mixing approach leads to atmospheric corrections that differ significantly from those obtained with the more realistic external-mixing approach. For relative humidities of 90% or more, the differences in retrieved aerosol optical properties and chlorophyll concentrations, incurred by application of the internal-mixing approach, become unacceptably large.  相似文献   

13.
Yan B  Chen B  Stamnes K 《Applied optics》2002,41(12):2202-2212
Ocean color is the radiance that emanates from the ocean because of scattering by chlorophyll pigments and particles of organic and inorganic origin. Air bubbles in the ocean also scatter light and thus contribute to the water-leaving radiance. This additional water-leaving radiance that is due to oceanic air bubbles could violate the black pixel assumption at near-infrared wavelengths and be attributed to chlorophyll in the visible. Hence, the accuracy of the atmospheric correction required for the retrieval of ocean color from satellite measurements is impaired. A comprehensive radiative transfer code for the coupled atmosphere--ocean system is employed to assess the effect of oceanic air bubbles on atmospheric correction of ocean color imagery. This effect is found to depend on the wavelength-dependent optical properties of oceanic air bubbles as well as atmospheric aerosols.  相似文献   

14.
Gordon HR  Du T  Zhang T 《Applied optics》1997,36(27):6938-6948
We provide an analysis of the influence of instrument polarization sensitivity on the radiance measured by spaceborne ocean color sensors. Simulated examples demonstrate the influence of polarization sensitivity on the retrieval of the water-leaving reflectance rho(w). A simple method for partially correcting for polarization sensitivity-replacing the linear polarization properties of the top-of-atmosphere reflectance with those from a Rayleigh-scattering atmosphere-is provided and its efficacy is evaluated. It is shown that this scheme improves rho(w) retrievals as long as the polarization sensitivity of the instrument does not vary strongly from band to band. Of course, a complete polarization-sensitivity characterization of the ocean color sensor is required to implement the correction.  相似文献   

15.
Kaloshin GA 《Applied optics》2011,50(14):2124-2133
The microphysical model Marine Aerosol Extinction Profiles (MaexPro) for surface layer marine and coastal atmospheric aerosols, which is based on long-term observations of size distributions for 0.01-100 μm particles, is presented. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above the sea level (H), fetch (X), wind speed (U), and relative humidity is investigated. The model is primarily to characterize aerosols for the near-surface layer (within 25 m). The model is also applicable to higher altitudes within the atmospheric boundary layer, where the change in the vertical profile of aerosol is not very large. In this case, it is only valid for "clean" marine environments, in the absence of air pollution or any other major sources of continental aerosols, such desert dust or smoke from biomass burning. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro are in good agreement with observational data and the numerical results obtained by the well-known Navy Aerosol Model and Advanced Navy Aerosol Model codes. Moreover, MaexPro was found to be an accurate and reliable instrument for investigation of the optical properties of atmospheric aerosols.  相似文献   

16.
Wang M 《Applied optics》1999,38(3):451-455
Using the reciprocal equation derived by Yang and Gordon [Appl. Opt. 36, 7887-7897 (1997)] for atmospheric diffuse transmittance of the ocean-atmosphere system, I examined the accuracy of an analytical equation proposed by Gordon et al. [Appl. Opt. 22, 20-36 (1983)] in computing the atmospheric diffuse transmittance for wavelengths from 412 to 865 nm for both a pure Rayleigh and a two-layer Rayleigh-aerosol atmosphere overlying a flat Fresnel-reflecting ocean surface. It was found that for viewing angles up to approximately 40 degrees , the analytical formula produces errors usually between 2% and 3% for nonabsorbing and weakly absorbing aerosols and for aerosol optical thicknesses tau(a) 相似文献   

17.
Cuesta J  Flamant PH  Flamant C 《Applied optics》2008,47(25):4598-4611
We present a so-called lidar and almucantar (LidAlm) algorithm that combines information provided by standard elastic backscatter lidar (i.e., calibrated attenuated backscatter coefficient profile at one or two wavelengths) and sunphotometer AERONET inversion of almucantar like measurements (i.e., column-integrated aerosol size distribution and refractive index). The purpose of the LidAlm technique is to characterize the atmospheric column by its different aerosol layers. These layers may be distinct or partially mixed, and they may contain different aerosol species (e.g., urban, desert, or biomass burning aerosols). The LidAlm synergetic technique provides the extinction and backscatter coefficient profiles, particle size distributions, and backscatter-to-extinction ratios for each aerosol layer. We present the LidAlm procedure and sensitivity studies. The applications are illustrated with examples of actual atmospheric conditions encountered in the Paris area.  相似文献   

18.
Land PE  Haigh JD 《Applied optics》1997,36(36):9448-9455
In algorithms for the atmospheric correction of visible and near-IR satellite observations of the Earth's surface, it is generally assumed that the spectral variation of aerosol optical depth is characterized by an Angstr?m power law or similar dependence. In an iterative fitting algorithm for atmospheric correction of ocean color imagery over case 2 waters, this assumption leads to an inability to retrieve the aerosol type and to the attribution to aerosol spectral variations of spectral effects actually caused by the water contents. An improvement to this algorithm is described in which the spectral variation of optical depth is calculated as a function of aerosol type and relative humidity, and an attempt is made to retrieve the relative humidity in addition to aerosol type. The aerosol is treated as a mixture of aerosol components (e.g., soot), rather than of aerosol types (e.g., urban). We demonstrate the improvement over the previous method by using simulated case 1 and case 2 sea-viewing wide field-of-view sensor data, although the retrieval of relative humidity was not successful.  相似文献   

19.
Deschamps PY  Herman M  Tanre D 《Applied optics》1983,22(23):3751-3758
The effect of atmospheric scattering on ocean color measurements from space is considered. It is shown that modeling of the atmospheric effects can be improved by taking into account not only the direct but also the diffuse component of atmospheric transmittance and by a more precise formulation of the interaction between molecular and aerosol scattering in the calculation of atmospheric reflectance. This method, necessitating two near-infrared channels, should be used in future ocean color experiments to better correct for variable aerosol reflectance. The relative accuracy of the aerosol reflectance correction would then be to within 5%, as opposed to the more than 10% obtained with previous modelings.  相似文献   

20.
Gordon HR 《Applied optics》1995,34(36):8363-8374
A methodology for delineating the influence of finite spectral bandwidths and significant out-of-band response of sensors for remote sensing of ocean color is developed and applied to the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS). The basis of the method is the application of the sensor's spectral-response functions to the individual components of the top-of-the-atmosphere (TOA) radiance rather than the TOA radiance itself. For engineering purposes, this approach allows one to assess easily (and quantitatively) the potential of a particular sensor design for meeting the system-sensor plus algorithms-performance requirements. In the case of the SeaWiFS, two significant conclusions are reached. First, it is found that the out-of-band effects on the water-leaving radiance component of the TOA radiance are of the order of a few percent compared with a sensor with narrow spectral response. This implies that verification that the SeaWiFS system-sensor plus algorithms-meets the goal of providing the water-leaving radiance in the blue in clear ocean water to within 5% will require measurements of the water-leaving radiance over the entire visible spectrum as opposed to just narrow-band (10-20-nm) measurements in the blue. Second, it is found that the atmospheric correction of the SeaWiFS can be degraded by the influence of water-vapor absorption in the shoulders of the atmospheric-correction bands in the near infrared. This absorption causes an apparent spectral variation of the aerosol component between these two bands that will be uncharacteristic of the actual aerosol present, leading to an error in correction. This effect is dependent on the water-vapor content of the atmosphere. At typical water-vapor concentrations the error is larger for aerosols with a weak spectral variation in reflectance than for those that display a strong spectral variation. If the water-vapor content is known, a simple procedure is provided to remove the degradation of the atmospheric correction. Uncertainty in the water-vapor content will limit the accuracy of the SeaWiFS correction algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号