首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiAl基合金的工艺—显微组织—力学性能关系   总被引:18,自引:2,他引:16  
因密度、比刚度、高温比强度和阻燃性等方面的优势,TiAl基金属间化合物被认为是最有应用潜力的新一代结构材料。室温脆性以及延性、蠕变性能和其它性能的平衡是阻碍TiAl基合金作为高温结构材料实际应用的主要障碍。在分析合金化对组织与性能的影响及机理、加工/热处理 对组织与性能的影响、变形和断裂机制、显微组织与拉伸性能的关系、抗氧化性及改善、蠕变性能与蠕变机制的基础上,论述了TiAl基合金的工艺-显微组织-力学性能关系。  相似文献   

2.
TiAl金属间化合物表面技术进展   总被引:12,自引:0,他引:12  
TiAl合金具有低密度、高比强度、高比刚度、高弹性 模量、耐腐蚀和高温抗蠕变性好等优点,成为航空航天、工业燃气轮机以及汽车工业中最具潜力的高温结构材料.作为最接近实用化阶段的一类金属间化合物,须解决其抗高温氧化和耐磨性差的问题.本文综述了TiAl金属间化合物抗高温氧化和耐磨的表面技术最新进展.  相似文献   

3.
快速凝固TiAl化合物的研究进展   总被引:4,自引:0,他引:4  
TiAl合金是一种很有希望的航空、航天及汽车用高温结构材料,但是其较低的室温塑性限制了它的应用.快速凝固技术有望使其性能得到改善.综述了近年来快速凝固TiAl合金的研究进展,包括快速凝固工艺、合金的发展以及合金的组织演变及其特征、力学性能及添加合金化元素的作用,亚稳相的产生及稳定性以及快速凝固薄带或粉末的固结等.  相似文献   

4.
《Intermetallics》2000,8(9-11):1101-1109
Current more or less progressed developments on the base of intermetallic phases usually aim at new materials with the highest possible strength, creep resistance and oxidation resistance at the highest possible temperature and tolerable brittleness at lower temperatures for structural applications at high temperatures. Intermetallic alloys offer advantageous possibilities for reaching these aims by appropriate combination of phases and optimisation of phase distribution. This is exemplified with respect to strength and creep resistance by recent studies on NiAl alloys with strengthening Laves phase and multiphase TiAl alloys. The beneficial effects of additional softening phases on deformability and toughness are demonstrated by the results of recent studies on Laves phase alloys with disordered Fe–Al phase, NiAl alloys with disorderd Ni–Fe phase and partially transformed martensitic NiAl alloys. Mechanisms and problems are discussed and perspectives are outlined.  相似文献   

5.
Intermetallic alloys based on gamma titanium aluminide   总被引:4,自引:0,他引:4  
Titanium-aluminide alloys based on TiAl have an excellent potential to become one of the most important aerospace materials because of their low density, high melting temperature, good elevated-temperature strength and modulus retention, high resistance to oxidation and hydrogen absorption, and excellent creep properties. The chief roadblock to their application is poor ductility at low to intermediate temperatures that results in low fracture toughness and a fast fatigue-crack growth rate. During the last several years, a great deal of effort has been made to improve these ductile properties. These endeavors have met with some success through chemistry modification and microstructure control.  相似文献   

6.
Intermetallic alloys based on TiAl are candidates for several structural high temperature applications but their oxidation resistance is limited to temperatures below 800 °C. In this paper the results of high temperature oxidation and creep tests will be presented and discussed. The treatment with halogens improves the oxidation resistance of these alloys up to 1050 °C. A thin protective Al2O3‐layer is formed after treatment with halogens instead of the mixed TiO2/Al2O3/TiN scale typically grown on these alloys. This alumina layer protects the component under isothermal and thermocyclic conditions. The protective effect is stable up to at least 8760 h. Creep tests of halogen treated materials at high temperatures showed no effect on the creep behaviour. Automotive turbocharger rotors were exposed at 1050 °C in air with and without fluorine‐treatment for demonstration of real parts.  相似文献   

7.
采用第一原理赝势平面波方法计算了D0_19结构的α_2-Ti-25Al-xNb(x=O—12,原子分数,%)晶体的弹性模量(B, G和E)和抗拉强度(σ_b),并利用Cauchy压力(c_(12)-C_(44))与G/B比值表征和评判了不同浓度Nb合金化时α_2一Ti-25Al- xNb合金的韧脆化倾向.结果表明:在x=2—12时,α_2-Ti-25Al-xNb晶体的抗拉强度(σ_b)与σ_2相合金的弹性模量(B, E和G)随x增加而增大;在x=0—6时,α_2-Ti-25Al-xNb合金脆性有一定改善,且x值越大韧化效果越好;但在x=7—9时,相对于α_2-Ti_3Al,合金脆性不但没有得到弱化,反而随x增加而加剧;随后,当x进一步增大时,合金脆性又随x增加再次得到改善,至x=12时,α_2-Ti-25Al-xNb合金的韧化效果最好.通过电子态密度(DOS)和投影电子态密度(PDOS)等电子结构的分析,初步解释了Nb的这种强化与韧化作用.  相似文献   

8.
Recent developments in engineering γ—TiAl intermetallics   总被引:4,自引:4,他引:4  
γ-TiAl based alloys are rapidly being developed for elevated temperature applications,due to their high strength,light mass and good oxidation resistance.However,th disadvantages of TiAl based alloys are low ductility and toughness at room temperature,and poor workability.Grain refinement is one of the most effective ways for improving room temperature tensile properties and hot workability of ordered TiAl based alloys.At present,the majority of research works have focused on alloy modifications through compositional controls,alloying additions,thermo-mechanical processing and production techniques.This article discusses the research status of TiAl based alloys in the aras of microstructure,alloying,processing and applications.  相似文献   

9.
Oxide-dispersion-strengthened (ODS) high-temperature alloys represent a unique class of powder-metallurgy-based engineering materials. They offer combinations of high-temperature strength, oxidation resistance, and hot corrosion resistance that cannot be obtained in other alloys. The alloys were initially developed for the aircraft gas turbine industry; since then, however, applications have expanded to include industrial gas turbines, equipment for handling molten glass, high-temperature furnace assemblies, and a variety of other industrial components. Internationally, the materials are also of interest for nuclear power systems (both breeder and fusion reactors) since ferritic ODS alloys exhibit both excellent swelling resistance and good elevated-temperature creep resistance. Many of these applications require that the ODS alloys be joined to either themselves or to other materials. The purpose of this paper is to review some of the techniques available for making these joints.  相似文献   

10.
采用有坩埚整体定向凝固技术研究了铌硅化物基超高温合金在不同过热温度下的定向凝固组织和固/液界面形态演化.研究结果表明:在抽拉速率均为15μm/s的条件下,当过热温度为1950℃时,定向凝固组织由初生铌基固溶体(Nb_(ss))枝晶和耦合生长的花瓣状(Nb_(ss)+γ-(Nb,X)_5si_3)共晶组成;当过热温度为2000和2050℃时,凝固组织为耦合良好的花瓣状共晶;但随着过热温度进一步提高到2100和2150℃,凝固组织演变为粗大树枝状Nb_(ss)和细小共晶.随着过热温度的提高,固/液界面形态出现树枝状界面→胞状界面→树枝状界面的形貌变化.  相似文献   

11.
“Re效应”使得Mo的理化、热电、力学、加工焊接性能得到全面改善。Mo-Re合金由于具有良好的综合性能,被广泛应用于先进核能、航空航天、电子工业、生物医用等领域。尤其是优异的抗辐照性能、与核燃料及碱金属冷却剂的相容性、中子特性等核物理性能,使其成为核反应堆堆芯结构材料的首选。本文从晶体结构、组织性能、制备加工及应用4个方面系统综述了Mo-Re合金的研究现状,并对其发展前景进行了展望。  相似文献   

12.
TiAl基合金作为一种新型轻质高温结构材料,以其密度低、比强度和比模晕高,具有较好的抗氧化和蠕变性能以及优异的抗疲劳性能,在航空航天和汽车等领域具有广阔的应用前景.本文主要介绍了TiAl基合金的熔炼技术、熔模精密铸造技术及应用研究,并提出了TiAl基合金熔模精密铸造技术的不足与展望.  相似文献   

13.
Bo-chao Lin  Wei Chen 《中国铸造》2021,18(4):307-316
As a typical intermetallic material, TiAl is inevitably difficult to process by conventional methods. Additive manufacturing (AM) has recently become a new option for making net-shape TiAl components. Among all AM methods, electron beam melting (EBM) shows the potential to make TiAl components with good mechanical properties and is used for low pressure turbine blades. The mechanical properties, including tensile and compression properties, fracture toughness, fatigue and creep properties of EBM TiAl are reviewed and compared to the conventionally fabricated alloys. Results show that the tensile strength of EBM alloys is higher than cast alloys, and other properties are comparable to the cast/forged alloys. The sensitivity of mechanical properties and microstructure to EBM processing parameters is presented. Issues including layered microstructure, anisotropy in mechanical properties, and fatigue failure from defects are also reviewed. Finally, some opportunities and challenges of EBM TiAl are identified.  相似文献   

14.
Molybdenum silicide based materials and their properties   总被引:2,自引:0,他引:2  
Molybdenum disilicide (MoSi2) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 °C) material with excellent oxidation resistance and a moderate density (6.24 g/cm3). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi2 composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electronmigration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi2-based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. In this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed.  相似文献   

15.
TiAl金属间化合物及其连接技术的研究进展   总被引:3,自引:5,他引:3       下载免费PDF全文
近年来 ,TiAl金属间化合物由于其密度小、硬度大、耐高温、具有优良的抗氧化能力等独特的性能 ,因此越来越引起广泛的关注并得到了迅猛的发展。根据目前TiAl金属间化合物被认为是在航空、航天飞行器等军事和民用两者都具有广泛应用前景的高温结构材料 ,文中介绍了世界范围内TiAl金属间化合物研究发展现状。TiAl金属间化合物有效的运用必须要有可靠的连接技术 ,因此TiAl金属间化合物的连接问题是其实用化所要面临的问题之一。固态焊接是实现TiAl金属间化合物连接十分有效的方法。文中介绍了TiAl金属间化合物连接技术的发展现状 ,重点评述了TiAl金属间化合物固态焊接的研究状况 ,指出了需要深入研究的问题  相似文献   

16.
TiAl金属间化合物及其连接技术的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
近年来 ,TiAl金属间化合物由于其密度小、硬度大、耐高温、具有优良的抗氧化能力等独特的性能 ,因此越来越引起广泛的关注并得到了迅猛的发展。根据目前TiAl金属间化合物被认为是在航空、航天飞行器等军事和民用两者都具有广泛应用前景的高温结构材料 ,文中介绍了世界范围内TiAl金属间化合物研究发展现状。TiAl金属间化合物有效的运用必须要有可靠的连接技术 ,因此TiAl金属间化合物的连接问题是其实用化所要面临的问题之一。固态焊接是实现TiAl金属间化合物连接十分有效的方法。文中介绍了TiAl金属间化合物连接技术的发展现状 ,重点评述了TiAl金属间化合物固态焊接的研究状况 ,指出了需要深入研究的问题  相似文献   

17.
《Acta Materialia》1999,47(14):3793-3798
Modifications to alloy chemistry are often used to tailor the intrinsic flow behavior of structural materials. Models of creep in intermetallic alloys must account for the influence of chemistry on the available intrinsic creep mechanisms. As in simple metals the presence of vacancies strongly influences bulk diffusion processes in these materials. Limiting the density of constitutional and thermal vacancies by alloying may produce materials with enhanced creep properties. The energy of intrinsic and substitutional point defects in L10 TiAl is calculated within a first principles, local density functional theory framework. Relaxed structures and energies for vacancies, antisites and solid solutions are calculated using a plane-wave-pseudopotential method. Calculated defect energies are used within a canonical ensemble formalism to estimate the point defect densities as a function of temperature and composition. The density of vacancies is found to be sensitive to the underlying stoichiometry of TiAl. The dependence of the vacancy concentration for solid solutions of Si, Cr, Nb, Mo, Ta and W is also predicted.  相似文献   

18.
Austenitic stainless steels are cost-effective materials for high-temperature applications if they have the oxidation and creep resistance to withstand prolonged exposure at such conditions. Since 1990, Oak Ridge National Laboratory (ORNL) has developed advanced austenitic stainless steels with creep resistance comparable to Ni-based superalloy 617 at 800–900°C based on specially designed “engineered microstructures” utilizing a microstructure/composition database derived from about 20 years of radiation effect data on steels. The wrought high temperature-ultrafine precipitate strengthened (HT-UPS) steels with outstanding creep resistance at 700–800°C were developed for supercritical boiler and superheater tubing for fossil power plants in the early 1990s, the cast CF8C-Plus steels were developed in 1999–2001 for land-based gas turbine casing and diesel engine exhaust manifold and turbocharger applications at 700–900°C, and, in 2015–2017, new Al-modified cast stainless steels with oxidation and creep resistance capabilities up to 950–1000°C were developed for automotive exhaust manifold and turbocharger applications. This article reviews and summarizes their development and their properties and applications.  相似文献   

19.
Titanium is a widely used structural material because of its low specific weight, good mechanical properties and excellent corrosion resistance at ambient temperature. As a result of increased oxidation at elevated temperatures and environmental embrittlement the maximum operation temperature of standard Ti‐alloys is only about 600 °C. The oxidation behaviour can be improved by different methods, e.g. coatings. This leads to an improvement which is, however, often limited. The combination of Al‐enrichment in the sub surface zone, so that a TiAl‐layer is formed, plus F‐treatment gives impressively good results because a protective alumina scale is formed due to the fluorine effect. This alumina scale prevents oxygen inward diffusion which causes embrittlement and protects the material against environmental attack. The procedure is applied to alloys with a very low Al‐content or even no Al at all. In the paper results of oxidation tests of α‐Ti without any treatment, with Al‐treatment and with a combination of Al‐ + F‐treatment are presented. Aluminium was diffused into the samples by a powder pack process. Fluorine was applied by a liquid phase process. The formation of an alumina scale on treated samples was revealed by post experimental investigations. The results are discussed referring to the fluorine effect model for TiAl‐alloys.  相似文献   

20.
Plasma immersion ion implantation (PIII) using halogen or oxygen plasmas has been employed for the surface passivation of advanced alloys with a view to their applications for high-temperature oxidation protection and in medicine. Special devices have been designed to ensure efficient plasma generation and reduce sample contamination arising from the interaction of the aggressive plasmas with the chamber components under bias. The paper addresses two main applications of PIII, namely oxidation protection of gamma-titanium aluminides (γ-TiAl), and modification of the surface properties of shape-memory superelastic nickel-titanium (NiTi) alloys. TiAl intermetallics are of great interest for advanced automobile, aerospace and power generation applications due to their low specific weight and high strength. However, excessive oxidation occurring in these materials at temperatures above 700 °C has hindered their widespread use. Samples of technical γ-TiAl alloys have been treated by both beamline implantation of Cl or F, and PIII of Cl using an Ar/Cl gaseous blend or alternative precursor gases. High-temperature oxidation behavior has been examined under conditions of either isothermal or thermocyclic oxidation at 900 °C. Optimized implantation processing produces marked improvement in the oxidation behavior of the γ-TiAl samples. On the basis of these results, a commercially viable process for enhancing the high-temperature oxidation resistance of γ-TiAl alloys using PIII of halogens is being developed. NiTi alloys are promising materials for use in biomedicine, provided that the release of Ni ions into the body environment can be sufficiently reduced. Oxygen PIII at substrate temperatures below 250 °C results in the formation of a transparent rutile TiO2 surface layer with a Ni content down to below 1 at.%. This layer in turn serves as a barrier to the corrosion and out-diffusion of Ni ions. Biocompatibility tests show superior in vitro blood compatibility in comparison with untreated NiTi samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号