首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, the formation of Bi4Ti3O12 by solid state reaction from Bi2O3 and TiO2 starting powders has been studied. The Bi4Ti3O12 formation occurs through an intermediate Bi12TiO20 sillenite phase formed at temperatures sligthly over 300 °C. This sillenite phase is stable up to ∼750 °C, but in the presence of TiO2 reacts to form Bi4Ti3O12 at temperatures >500 °C. Raman spectroscopy has been used to evidence the amorphization of TiO2, demonstrating that the Bi4Ti3O12 formation occurs through the reaction of sillenite Bi12TiO20 and TiO2.  相似文献   

2.
A protonated form of the n?=?4 layered bismuth containing perovskite-like titanate K2.5Bi2.5Ti4O13 belonging to Ruddlesden-Popper phases was prepared via ion exchange reaction of interlayer K+ with protons. Its composition was investigated by TG ICP and EDX analysis was found to be H2K0.5Bi2.5Ti4O13·H2O. The thermal behavior of the obtained phase was investigated by STA coupled with mass-spectrometry, the structural changes, happening with the sample during heating, were examined by XRD. It was shown that the as-prepared hydrated phase undergoes two-stage dehydration at low temperatures (up to 160?°C). The further heating leads to the gradual decomposition and crystallization of new phases, notably Bi2Ti2O7, Bi4Ti3O12 and Bi2Ti4O11. The morphology of the as-prepared sample and samples after heat treatment was examined using SEM.  相似文献   

3.
A stable and translucent Bi@Bi4Ti3O12/TiO2 film was fabricated on conventional glass substrates for the first time. The film exhibited a good photocatalytic performance and efficient self-cleaning capability against organic dyes under full spectral irradiation and visible light irradiation. Bi4Ti3O12/TiO2 film was first prepared on a glass substrate with colloidal silica as a high temperature binder, followed by implantation of nanoscale Bi in it by an in-situ partially reduction of Bi4Ti3O12 to generate Bi@Bi4Ti3O12/TiO2 films. The improved photocatalytic ability is probably attributed to the surface plasmon resonance of Bi atom as well as the enhanced electron transfer efficiency and synergistic effect of Bi4Ti3O12 and TiO2. According to trapping experiments, hydroxyl radicals (OH) were active species in the photocatalytic degradation of dyes under full spectral light irradiation and possible photocatalytic mechanism was proposed. The film prepared in this work may well have potential practical applications in many aspects, such as cleansing treatments for high building external decorative panels and also systematic characterization of the film suggests that the in-situ reduction is an effective and simple way to produce nanoscale Bi@Bi4Ti3O12.  相似文献   

4.
Bismuth titanate thin films are deposited on ITO/glass substrates by rf magnetron sputtering at room temperature using a Bi4Ti3O12 ceramic target. The deposited Bi4Ti3O12 films are annealed in a conventional furnace in ambient air for 10 min at temperatures ranging from 550 to 640 °C. One specimen is annealed in a crucible containing additional Bi2O3 compensation powder, while the other specimen is annealed in ambient air. XRD analysis shows that the crystal phases of films annealed with Bi2O3 powder are better than those of films annealed without Bi2O3 powder. Furthermore, the EDS results reveal that the bismuth weight percentage of the former is higher than that of the latter. SIMS analysis shows that the bismuth decreases near the surface of Bi4Ti3O12 film annealed without Bi2O3 powder, but reveals a stable distribution throughout the film annealed with Bi2O3 powder. These results imply that bismuth is readily evaporated during the thermal treatment process, particularly from the region near the film surface. Finally, the dielectric and polarization properties of the thin films annealed with Bi2O3 powder are found to be superior to those of the films annealed in ambient air.  相似文献   

5.
A multicomponent oxide, Bi4Ti3O12/TiO2 heterostructure was successfully synthesized via a two-step synthesis route based on an anodic oxidation procedure and a subsequent hydrothermal technique. X-ray diffraction confirmed that the composition of the as-fabricated sample was a Bi4Ti3O12/TiO2 composite. Scanning and transmission electron microscopy observation reveals that the as-synthesized sample consisted of TiO2 nanotubes decorated with Bi4Ti3O12 nanocubes. The photocatalytic property of Bi4Ti3O12/TiO2 heterostructure was evaluated by decomposing methyl orange as a model organic compound. Compared with the unmodified TiO2 nanotube arrays, Bi4Ti3O12/TiO2 heterostructure exhibits a higher photocatalytic activity in the decomposition of methyl orange under UV light. The prominent photocatalytic activity could be ascribed to the formation of the heterostructure between Bi4Ti3O12 and TiO2 as well as a good dispersity of Bi4Ti3O12 nanocubes, which could effectively separate the photogenerated carriers and reduce the electron–hole recombination.  相似文献   

6.
Fine particles ofphotocatalytic anatase TiO2 prepared through hydrolysis of titanium tetraisopropoxide were coated by carbon. A reduced phase, Ti4O7, was formed through interaction between TiO2 and the coating carbon. EXAFS analysis on this Ti4O7 phase showed an intermediate Ti-Ti distance between those in anatase and rutile, which agreed with the structure composed of two-dimensional slabs of Ti-O octahedra separated by a shear plane. This carbon-coated Ti4O7 was confirmed to have photocatalytic activity, even though a little lower than anatase, examining the decomposition of methylene blue in water under LTV irradiation.  相似文献   

7.
Effect of Ce and La substitution on the microstructure and dielectric properties of bismuth titanate (BT) ceramics was investigated. Bismuth titanate ceramics (Bi4−xAxTi3O12) (A = Ce or La; x = 0, 0.5, 1) were processed by sintering of pressed pellets, prepared from nanopowder synthesized by the modified sol-gel method. Pure and La modified bismuth titanate ceramics have single Bi4Ti3O12 phase of Aurivillius type, whereas a small amount of Bi2Ti2O7 pyrochlore phase appears in Ce modified bismuth titanate ceramics. In the same time addition of La and Ce improved sinterability of BT ceramics. The results of the measurement of dielectric constant and loss tangent at different frequencies (100 Hz-1 MHz) as a function of temperature reveal that Ce modified ceramics has a diffuse phase transition. Temperature Tm, corresponding to the maximum value of the dielectric constant, is shifted to higher temperature and the maximum value of the dielectric constant is decreased with increasing frequency, which indicate that relaxor behavior is caused by Ce substitution.  相似文献   

8.
Textured bismuth titanate (Bi4Ti3O12) ceramics were fabricated by templated grain growth (TGG), using plate-like Bi4Ti3O12 particles prepared by a molten salt method as the templates. The templates were aligned in the fine-grained matrix by aqueous tape casting with their major surface parallel to the casting plane. Effect of sintering conditions on the grain orientation in the material was investigated. It was found that the degree of grain orientation (Lotgering factor, f) increased with the increase in sintering temperature, soaking time and heating rate. High Lotgering factor (f⩾0.92) can be obtained through careful control of the sintering parameters. The textured Bi4Ti3O12 ceramics showed a high anisotropy in its dielectric properties in the directions parallel and perpendicular to the casting plane.  相似文献   

9.
Dendritic growth of bismuth oxide nanostructured films was accomplished by reactive magnetron sputtering. The deposition of the Bi2O3 template layers was adapted to abide a vapour-liquid-solid mechanism in order to develop a 3D growth morphology with high surface area templates for photocatalytic applications. TiO2 photocatalytic thin films were deposited at a later stage onto Bi2O3 layers. The obtained heterostructured films were characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy. Additionally, the photocatalytic efficiency was assessed by conducting an assay using methylene blue dye as testing pollutant under a UV-A illumination. The photocatalytic tests revealed that the Bi2O3 layers functionalized with TiO2 thin films are more efficient at degrading the pollutant, by a factor of 6, when compared with the individual layered films.  相似文献   

10.
The mechanism by which Bi0.5Na0.5TiO3 and Bi4.5Na0.5Ti4O15 templates are synthesized via a topochemical microcrystal conversion method using Bi4Ti3O12 precursor and TiO2 particles was investigated based on their crystal structures. The Bi0.5Na0.5TiO3 template consisted of a mixture of plate-like and equiaxed particles, whereas the Bi4.5Na0.5Ti4O15 template consisted only of plate-like particles. The size of the plate-like and equiaxed particles was dependent on the size of the Bi4Ti3O12 precursor and TiO2 particles, respectively. The Lotgering factor and piezoelectric constant of textured Bi0.5(Na0.8K0.2)0.5TiO3 ceramics prepared using the Bi0.5Na0.5TiO3 template were lower than those of the textured Bi0.5(Na0.8K0.2)0.5TiO3 ceramics prepared from the Bi4.5Na0.5Ti4O15 template. This can be attributed to the small amount of plate-like particles in the Bi0.5Na0.5TiO3 template caused by the inevitable co-existence of equiaxed particles.  相似文献   

11.
A novel Cu2O/TiO2/Bi2O3 ternary nanocomposite was prepared, in which copper oxide improves the visible light absorption of TiO2 and bismuth oxide improves electron–hole separation. The ternary composite exhibited extended absorption in the visible region, as determined by UV–Vis diffuse reflectance spectroscopy. High-resolution transmission electron microscopy images showed close contact among the individual semiconductor oxides in the ternary Cu2O/TiO2/Bi2O3 nanocomposite. Improved charge carrier separation and transport were observed in the Cu2O/TiO2/Bi2O3 ternary composite using electrochemical impedance spectroscopy and photocurrent analysis. TiO2 modified with bismuth and copper oxides showed exceptional photocatalytic activity for hydrogen production under natural solar light. With optimum bismuth and copper oxide loadings, the Cu2O/TiO2/Bi2O3 ternary nanocomposite exhibited an H2 production (3678 μmol/h) 35 times higher than that of bare TiO2 (105?μmol/h). The synergistic effect of improved visible absorption and minimal recombination was responsible for the enhanced performance of the as-synthesized ternary nanocomposite.  相似文献   

12.
Various compositions of the solid solution system (100  x) Bi0,5Na0,5TiO3xBi0,5K0,5TiO3 (x = 0, 10, 25, 50, 75, 90, 100) were prepared by the mixed oxide route. The formation reaction was analyzed by thermogravimetry coupled with mass spectroscopy and differential scanning calorimetry. In situ high temperature X-ray diffraction up to 770 °C indicated emerging and vanishing of phases during the calcination. Intermediate phases such as alkalipolytitanate (Na/K)2Ti6O13 and bismuth titanate Bi2Ti2O7 were identified as forming the perovskite phase. The formation reactions were proposed based on the data obtained. Furthermore the microstructure and the dielectric behavior of the sintered samples were observed by scanning electron microscopy, impedance spectrometry and polarization measurements.  相似文献   

13.
The lead-free piezoelectric material sodium bismuth titanate (NBT, Na0.5Bi0.5TiO3) has attracted considerable attention owing to its promising dielectric, piezoelectric, and electrical properties. However, the literature on the binary subsystems is contradictory and there are only limited data for the ternary system. The present work surveys all of the reports of the binary subsystems Bi2O3 – TiO2 and Na2O – TiO2 and synthesizes these data into inclusive revised versions. The compatibilities for the ternary system Na2O – Bi2O3 – TiO2 were determined experimentally, thus enabling the construction of a complete isothermal section at 800 °C. The compatibilities associated with the problematic binary subsystem Na2O – Bi2O3, which experiences extreme volatilisation, were determined through the generation of the absent standard-state thermodynamic functions for the relevant binary and ternary phases, thus providing a full suite of thermodynamic data for this system. The thermodynamic stability diagrams for Na2O, Bi2O3, and TiO2 thus were calculated. The isothermal section also addresses the contradictions in the literature concerning the formation of solid solutions of Bi12TiO20-x / Bi12-xTi1+xO20+0.5x, pyrochlore (Bi2Ti2O7 / NawBi2-xTi2-yO7-z), BTO (Bi4Ti3O12 / NaxBi4Ti3O12+0.5x), and NBT (Na0.5Bi0.5TiO3 / Bi1±xNaxTiO3.5±x). Further, it was observed that the congruent melting point of NBT, which was determined to be 1225 °C, was preceded by the onset of gradual structural destabilization at 940 °C. Also, the NBT rhombohedral → tetragonal phase transformation was observed at an onset temperature of ∼250 °C. The present work thus provides platform data for the fabrication and reactivities of materials in the ternary system Na2O – Bi2O3· TiO2 and its binary subsystems.  相似文献   

14.
Thermal stability of calcium copper titanate was studied by differential scanning calorimetry, thermogravimetry and high-temperature mass spectrometry. Calcium copper titanate (CCTO) had no thermal effects and mass losses caused by thermal dissociation or any phase transitions, besides melting, in the temperature range of 298–1423?K. The melting point of calcium copper titanate is 1398?K. The endothermic effect at 1250?K was associated with the decomposition of copper (II) oxide segregated in the intergrain space of the CaCu3Ti4O12-CuO ceramics. In this connection, we proposed a simple method for estimating the content of copper oxide in the CaCu3Ti4O12-CuO composite. The processes of evaporation of CaCu3Ti4O12 in the temperature range of 1500–2100?K were studied by high-temperature mass spectrometry. In the temperature range of 1500–1750?K, easily volatilized copper oxide was evaporated selectively from the calcium copper titanate. At the temperature of 2100?K, atomic calcium and titanium oxides, TiO and TiO2, were present in the vapor.  相似文献   

15.
Rare-earth ions (Eu3+, Tb3+) activated magnesium calcium bismuth titanate [(MgCa)2Bi4Ti5O20] ceramics were prepared by conventional solid state reaction method for their structural and luminescence properties. By using XRD patterns, the structural properties of ceramic powders have been analyzed. Emission spectrum of Eu3+:(MgCa)2Bi4Ti5O20 ceramic powder has shown strong red emission at 615 nm (5D0 → 7F2) with an excitation wavelength λexci = 393 nm and Tb3+:(MgCa)2Bi4Ti5O20 ceramic powder has shown green emission at 542 nm (5D4 → 7F5) with an excitation wavelength λexci = 376 nm. In addition, from the measurements of scanning electron microscopy (SEM), Fourier transform-infrared (FTIR) and energy dispersive X-ray analysis (EDAX) results the morphology, structure and elemental analysis of these powder ceramics have been studied.  相似文献   

16.
Mesostructured tungstic acid was prepared from Na2WO4 with protonated cation-exchange using a surfactant cetyltrimethyl ammonium bromine (CTAB) as the structure-directing agent under microwave radiation. The surfactant was removed by high-temperature calcination, microwave radiation extraction and Soxhlet extraction, respectively. The effects of these methods for removal of the surfactant were investigated in detail. XRD, TEM, FT-IR and UV-Vis were employed to characterize the mesostructured materials. The results showed that the microwave extraction and Soxhlet extraction were favorable to the synthesis of mesostructured tungstic oxide. Mesoporous structure was destroyed as the calcining temperature rising to 823 K. The mesoporous structure of WO3 prepared by microwave radiation extraction had an average pore diameter of 3.4 nm and specific surface area of 120.46m2·g−1. And also, the mesoporous materials WO3 doping with Bi2O3 displayed much higher photocatalytic activity than commercial Degussa P25 TiO2 under visible light and UV irradiation.  相似文献   

17.
The formation of a homogeneous Bi8TiO14 phase was successfully achieved in a specimen calcined at 600°C. However, a Bi4Ti3O12 secondary phase also developed in specimens calcined at temperatures higher than 600°C, probably because of Bi2O3 evaporation. For specimens sintered above 800°C, a small amount of the Bi8TiO14 phase melted during sintering, with the liquid phase contributing to the densification of the specimens; however, Bi4Ti3O12 and Bi12TiO20 secondary phases were still formed in these specimens. The microwave dielectric properties of the Bi8TiO14 phase were considerably affected by variations in the microstructure of the specimens. When the sintering temperature exceeded 825°C, the amount of secondary phases increased, and this decreased the density and Q×f values of the specimens. Bi8TiO14 ceramics sintered at 825°C exhibited promising microwave dielectric properties, with εr = 47.4, Q×f = 5370 GHz, and τf = ?16.01 ppm/°C.  相似文献   

18.
Pure and lanthanum doped barium bismuth titanate BaBi4−xLaxTi4O15 (BBLT, x=0, 0.05, 0.15, 0.30) ceramics were prepared utilizing solid state method. The X-ray diffraction (XRD) data confirmed formation of single-phase Aurivillius compounds while SEM micrographs did not show evident grain size change of doped ceramics. Dielectric properties were investigated in 1.21 kHz to 1 MHz frequency range and in the temperature range of 20 to 727 °C. When Bi3+ is substituted with La3+, a significant disorder was induced and the material exhibited broadening of the phase transition. Impedance analysis confirmed the presence of two semicircular arcs in doped samples suggesting the existence of grain and grain-boundary conduction. The dc-conductivity and activation energies were evaluated for all compositions.  相似文献   

19.
Finely dispersed BaTiO3 and Bi4Ti3O12 powders were prepared by solution-combustion synthesis using glycine, carbamide, and glycerol as reducing agents. The use of glycine as a reducing agent was found to yield single-phase BaTiO3 and Bi4Ti3O12 without additional heat treatment. Explored was the influence of reductant type and process parameters on the phase composition, crystal structure, and dielectric properties of combustion-synthesized barium and bismuth titanates.  相似文献   

20.
Li4Ti5O12 was synthesized by a solid-state reaction between Li2CO3 and TiO2 for applications in lithium ion batteries. The effects of the TiO2 phase and mechanochemical activation on the Li4Ti5O12 particles as well as the corresponding electrochemical properties were investigated. Rutile TiO2 was more desirable in acquiring high purity Li4Ti5O12 than anatase due to the anatase to rutile phase transformation, which was found to be more rigid in the solid-state reaction than the intact rutile phase. Mechanochemical activation of the starting materials was effective in decreasing the reaction temperature and particle size as well as increasing the Li4Ti5O12 content. The specific capacity depended significantly on the Li4Ti5O12 content, whereas the rate capability improved with decreasing particle size due to the enhanced contact area and reduced diffusion path. Overall, a 200 nm-sized Li4Ti5O12 powder with a specific capacity of 165 mAh/g could be synthesized by optimizing the milling method and starting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号