首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-k oxide dielectric films have attracted intense interest for thin-film transistors (TFTs). However, high-quality oxide dielectrics were traditionally prepared by vacuum routes. Here, amorphous high-k alumina (Al2O3) thin films were prepared by the simple sol-gel spin-coating and post-annealing process. The microstructure and dielectric properties of Al2O3 dielectric films were systematically investigated. All the Al2O3 thin films annealed at 300–600?°C are in amorphous state with ultrasmooth surface (RMS ~ 0.2?nm) and high transparency (above 95%) in the visible range. The leakage current of Al2O3 films gradually decreases with the increase of annealing temperature. Al2O3 thin films annealed at 600?°C showed the low leakage current density down to 3.9?×?10?7 A/cm2 at 3?MV/cm. With the increase of annealing temperature, the capacitance first decreases then increases to 101.1?nF/cm2 (at 600?°C). The obtained k values of Al2O3 films are up to 8.2. The achieved dielectric properties of Al2O3 thin films are highly comparable with that by vapor and solution methods. Moreover, the fully solution-processed InZnO TFTs with Al2O3 dielectric layer exhibit high mobility of 7.23?cm2 V?1 s?1 at the low operating voltage of 3?V, which is much superior to that on SiO2 dielectrics with mobility of 1.22?cm2/V?1 s?1 at the operating voltage of 40?V. These results demonstrate that solution-processed Al2O3 thin films are promising for low-power and high-performance oxide devices.  相似文献   

2.
The hydrophilic character of chitosan (CS) limits its use as a gate dielectric material in thin‐film transistors (TFTs) based on aqueous solution‐processable semiconductor materials. In this study, this drawback is overcome through controlled crosslinking of CS and report, for the first time, its application to aqueous solution‐processable TFTs. In comparison to natural CS thin films, crosslinked chitosan (Cr‐CS) thin films are hydrophobic. The dielectric properties of Cr‐CS thin films are explored through fabrication of metal–insulator–metal devices on a flexible substrate. Compared to natural CS, the Cr‐CS dielectric thin films show enhanced environmental and water stabilities, with a high breakdown voltage (10 V) and low leakage current (0.02 nA). The compatibility of Cr‐CS dielectric thin films with aqueous solution‐processable semiconductors is demonstrated by growing ZnO nanorods via a hydrothermal method to fabricate flexible TFT devices. The ZnO nanorod‐based TFTs show a high field‐effect mobility (linear regime) of 10.48 cm2 V?1 s?1. Low temperature processing conditions (below 100 °C) and water as the solvent are utilized to ensure the process is environmental friendly to address the e‐waste problem.  相似文献   

3.
In this paper, we present the infrared (IR) irradiation of chloride precursors as a promising method for the eco-friendly, low-temperature solution fabrication of oxide film devices, which typically require thermal annealing at temperature over 450?°C. By the IR irradiation of AlCl3 precursor, high-quality Al2O3 dielectric films were prepared at a low temperature of 230?°C. The obtained Al2O3 dielectric layers had high dielectric properties, such as a high capacitance of 158?nF/cm2 and a small leakage current of 5.4?×?10?8 A/cm2. Various structure characterizations confirmed the high quality of Al2O3 films produced by IR irradiation. Moreover, full low-temperature solution-produced thin-film transistors (TFTs) were fabricated through the IR irradiation of chloride precursors. The In2O3 TFTs achieved a high mobility of 33.6 cm2V?1s?1?at a small operation voltage of 4?V. Compared with the common thermal annealing method, IR irradiation results in better precursor conversion, higher oxygen lattice, and fewer oxygen defects. These results suggest that IR irradiation can serve as a new approach for the eco-friendly, low-temperature solution production of various oxide thin films and devices. The method is also very promising for the low-energy production of functional materials and devices.  相似文献   

4.
In this study, we prepared inorganic-organic HfO2-GPTMS hybrid films by a simple sol-gel method at low temperature for high-k dielectric gate applications. The hybrid films were deposited by spin coating process, followed by annealing at 150?°C. The hybrid dielectric material was characterized by Spectroscopic ellipsometry (SE), AFM, FESEM, FTIR, TGA, and XPS techniques. The resulting hybrid films exhibit homogeneous and smooth surface with high optical transparency. Their dielectric properties were analysed by measuring leakage current and capacitance versus voltage of metal-insulator-metal (MIM) capacitor structures. From this analysis, the leakage current density at ??5?V, capacitance and dielectric constant at 1?MHz measured on the hybrid films were 10?7 A/cm2, 51.3?nF/cm2 and of 11.4 respectively. Finally, to investigate the electrical performance of the hybrid thin films as a dielectric gate in thin film transistors (TFTs), bottom-gate TFTs were fabricated by depositing the HfO2-GPTMS dielectric gate layer on ITO-coated glass substrate and subsequently a sputtered a-IGZO thin film as the channel layer. The electrical response of the resulting TFTs demonstrated good saturation mobility of 4.74?cm2 V?1 s?1, very low threshold voltage of 0.3?V and Ion/Ioff current ratio of 104, with low operating voltage under 8?V.  相似文献   

5.
《Ceramics International》2019,45(13):16482-16488
A rapid lightwave (LW) irradiation method was presented for the low-temperature solution production of ZrO2 films as high-k dielectrics for flexible high-performance thin-film transistors (TFTs). The LW irradiation process markedly decreased the required processing temperature and processing time. Microstructure characterizations confirmed the successful formation of ZrO2 films with an ultrasmooth surface, large band gap (>5 eV) and low defect level. The ZrO2 film produced via LW irradiation at ∼200 °C in only 8 min presented excellent dielectric properties, including a small leakage current of 3.3 × 10−8 A/cm2 and a large capacitance of 296 nF/cm2, significantly outperforming the films by the conventional high-temperature annealing process at 400 °C for 60 min. Furthermore, LW irradiation was extended to the channel layer. The rapid low-temperature solution-processed InZrOx TFTs exhibited superior electrical characteristics, such as a high carrier mobility of 41.3 cm2V−1s−1 and a high on-off current ratio of 105∼106 at a low operation voltage of 3 V due to the employment of high-quality ZrO2 dielectric films. Moreover, the flexible TFT on a polyimide (PI) plastic substrate achieved a high mobility of nearly 30 cm2V−1s−1, indicating that LW irradiation is highly promising for the rapid and low-temperature solution production of high-quality and flexible oxide electronic devices.  相似文献   

6.
In this paper, we have developed a method to enhance the Al-N co-dopant solubility in bulk ZnO prepared by solid state reaction method. Reactive donor Al and acceptor N were mobilized by annealing the samples at various temperatures from 650 to 850?°C with a step of 50?°C in a programmable furnace. The solubility enhancement argument was verified by the conductivity measurements which showed that the conductivity of annealed films increases as the annealing temperature increases. The activation energy was calculated by the Arrhenius plot and was found to be (0.08?eV) very close to activation energy of shallow acceptor (nitrogen). To further strengthened our argument, we have also performed XRD, FTIR, Raman Spectroscopy and SEM measurements. XRD data suggested that only ZnO phases were present and no evidence for the presence of AlN, Al2O3 or Zn3N2 phases. We have also observed weakening and peak shifting of (002) with annealing temperature that suggested the incorporation of more acceptor defects in the crystal of ZnO. FTIR results verified the presence of Zn-O bond (437?cm?1) along with week vibration of Al-N bond at 917?cm?1. Raman spectroscopy data consists of 2E2, A1 (LO) and E2(high) modes of ZnO but sample annealed at 800?°C has additional nitrogen related mode at 507?cm?1. SEM images demonstrated the crystalline nature of samples having smooth surface but sample annealed at 800?°C has rough surface which indicated the enhancement of acceptor defects density.  相似文献   

7.
《Ceramics International》2022,48(9):12806-12812
We report the fabrication of high-performance polycrystalline indium gallium oxide (IGO) thin film transistors (TFTs) at a low temperature of 200 °C. Growth of a highly aligned cubic phase with a bixbyite structure was accelerated at a certain proportion of oxygen plasma density during deposition of the IGO thin film, which leads to outstanding electrical characteristics. The resulting polycrystalline IGO TFT exhibited a high field-effect mobility of 56.0 cm2/V, a threshold voltage (VTH) of 0.10 V, a low subthreshold gate swing of 0.10 V/decade, and a current modulation ratio of >108. Moreover, the crystalline IGO TFTs have highly stable behaviors with a small VTH shift of +0.8 and ?1.0 V against a positive bias stress (VGS,ST ?VTH = 20 V) and negative bias illumination stress (VGS,ST ?VTH = ?20 V) for 3,600 s, which is attributed to the high quality of the bixbyite crystalline structure.  相似文献   

8.
《Ceramics International》2017,43(6):4926-4929
In this study, transparent Li–N co-doped ZnSnO (ZTO: (Li, N)) thin film transistors (TFTs) with a staggered bottom-gate structure were fabricated by radio frequency magnetron sputtering at room temperature. Emphasis was placed on investigating the effects of post-annealing temperature on their physical and electrical properties. An appropriate post-annealing temperature contributes not only to achieving good quality thin films, but also to improving the electrical performance of the ZTO: (Li, N) TFTs. The ZTO: (Li, N) TFTs annealed at 675 °C showed the best electrical characteristics with a high saturation mobility of 26.8 cm2V−1s−1, a threshold voltage of 6.0 V and a large on/off current ratio of 4.5×107.  相似文献   

9.
《Ceramics International》2017,43(12):8956-8962
The electrical and chemical stability of solution-processed indium zinc oxide (IZO) channel thin-film transistors (TFTs) were engineered via a synergistic approach of annealing duration and self-combustion process. In particular, the amorphous IZO TFTs that were thermally treated at 400 °C for 3 h using the specific precursor combination to generate internal self-combustion energy showed the best electrical performance [high saturation mobility (μSAT)=2.7 cm2/V s] and stability [low threshold voltage shift (ΔVTH) under positive bias stress of 10.5 V] owing to the formation of oxide films with excellent metal–oxide–metal (M–O–M) bonds, fewer impurities, and an amorphous phase compared to IZO TFTs using other precursor formulas and annealing times. Longer annealing times led to a saturated M–O bond ratio and crystallization via extreme thermal annealing, which induced electrical degradation (low μSAT and high ΔVTH) of IZO TFTs. In the wet chemical patterning of electrodes, conventional acidic and basic wet etchants cause severe damage to the surfaces of the IZO channels; thus, insufficiently annealed IZO TFTs exhibited considerable degradation in terms of their on-current level and mobility. Alternatively, the TFTs subjected to an excessively long-term thermal annealing showed only a moderate decrease in mobility with the formation of small nanocrystals.  相似文献   

10.
In this paper, 4?mol% ZnO-doped Zr0.92Y0.08O2-α (8YSZ) and its 8YSZ+4ZnO/NaCl-KCl composite electrolyte were synthesized by a solid-state reaction. The X–ray diffraction (XRD) analysis indicates that 8YSZ+4ZnO and inorganic chlorides phases can coexist. The inorganic chlorides decrease the synthesis temperature of 8YSZ+4ZnO. The highest conductivities of 8YSZ+4ZnO and 8YSZ+4ZnO-NK are 7.0?×?10?3 S?cm?1 and 7.7?×?10?2 S?cm?1 at 700?°C, respectively. The oxygen concentration discharge cell shows that 8YSZ+4ZnO and 8YSZ+4ZnO-NK are good oxide ionic conductors under an oxygen-containing atmosphere. Finally, an H2/O2 fuel cell based on the 8YSZ+4ZnO-NK electrolyte reached the maximum power density (Pmax) of 315.5?mW?cm?2 at 700?°C.  相似文献   

11.
《Ceramics International》2022,48(7):9817-9823
Electrical and optical properties of In-Ga-Sn-O (IGTO) thin films deposited by radio-frequency magnetron sputtering were investigated according to annealing temperatures. While IGTO films remained an amorphous phase even after a heat treatment at temperature up to 500 °C, Hall measurements showed that annealing temperature had a significant impact on electrical properties of IGTO thin films. After investigating a wide range of annealing temperatures for samples from as-deposited state to 500 °C, IGTO film annealed at 200 °C exhibited the best electrical performance with a conductivity of 229.31 Ω?1cm?1, a Hall mobility of 36.89 cm2V?1s?1, and a carrier concentration of 3.85 × 1019 cm?3. Changes in proportions of oxygen-related defects and percentages of Sn2+ and Sn4+ ions within IGTO films according to annealing temperatures were analyzed with X-ray photoelectron spectroscopy to determine the cause of the superb performance of IGTO at a low temperature. In IGTO films annealed at 200 °C, Sn4+ ions acting as donor defects accounted for a high percentage, whereas hydroxyl groups working as electron traps showed a significantly reduced percentage compared to the as-deposited film. Optical band gaps of IGTO films obtained from UV–visible spectrum were 3.38–3.47 eV. The largest band gap value of 3.47 eV for the IGTO film annealed at 200 °C could be attributed to an increase in Fermi-level due to an increase of carrier concentration in the conduction band. These spectroscopic results well matched with electrical properties of IGTO films according to annealing temperatures. Excellent electrical properties of IGTO thin films annealed at 200 °C could be largely due to Sn donors besides oxygen vacancies, resulting in a significant increase in free carriers despite a low annealing. temperature.  相似文献   

12.
Herein, magnesium-doped zinc oxide nanorods (MgZnO NRs) were synthesized by the co-precipitation method and annealed at different temperatures in the range of 100–500?°C. The increase in the annealing temperature was found to influence both chemical and morphological structures of the MgZnO NRs: Ultraviolet–visible diffuse reflectance spectroscopy showed an increase in band gap with increase in the annealing temperature. Fourier-transform infrared spectra showed that two characteristic peaks at 487?cm?1 and 442?cm?1 corresponding to a weak Zn–O stretching initially decreased and then disappeared with increase in the annealing temperature. Moreover, the MgZnO NRs annealed at 100?°C had large crystallite size, high aspect ratio, and narrow edges. Remarkably, the MgZnO NRs annealed at 100?°C exhibited the highest antibacterial activity against both S. aureus and E. coli strains, attributed to the high aspect ratio and diffusion ability of the Zn2+ ions and large surface charge, crystallite size, and surface area. The MgZnO NRs annealed at the relatively low temperature of 100?°C could be easily produced commercially, in large quantities, and effectively used to prevent the growth of foodborne microbes in food packaging applications.  相似文献   

13.
Nanocrystalline ZnO (nc‐ZnO) thin‐film transistors (TFTs) exhibit inherent instability under bias/photo stresses, which originates from the oxygen molecules adsorbed on the surface of the crystal grains. The space charge region at nanocrystal surfaces that is induced by adsorbed oxygen molecules produces a high electrical potential barrier and significantly interrupts charge transport between the source and drain in nc‐ZnO TFTs. In this article, we developed high‐performance TFTs via the continuous deposition of an extremely thin Al2O3 layer on a nc‐ZnO channel. These devices were fabricated by atomic layer deposition at an extremely low process temperature of 150°C, including both the deposition and postannealing temperatures. The nc‐ZnO TFT with an extremely thin Al2O3 layer (1.8 nm) showed a significantly higher mobility (25 cm2/Vs) compared to devices without an Al2O3 layer (3.6 cm2/Vs). This dramatic difference was ascribed to the suppression of the chemisorption of oxygen molecules at the nanocrystal surface during thermal annealing (reducing the potential barrier width/height between adjacent nanocrystals). Furthermore, ultrathin Al2O3‐covered nc‐ZnO TFTs exhibited considerably enhanced electrical/photo stability due to the reduction in adsorption/desorption events of oxygen molecules on the nanocrystal surfaces (with no change in the depletion width after illumination) under gate bias or illumination stress.  相似文献   

14.
《Ceramics International》2023,49(4):5905-5914
Utilization of highly conductive metal-oxide (MO) film such as indium-tin-oxide (ITO) in a channel layer has been considered as a promising strategy to realize high-mobility thin-film transistors (TFTs). However, achieving high-mobility is typically restricted by severe negative threshold voltage (Vth) shift and large off-current which are consequences of channel thickness increment. Here, to realize high-mobility MO TFTs with low Vth and off-current level, a heterogeneous ITO/amorphous indium-gallium-zinc-oxide (a-IGZO) channel structure was implemented. In the channel, the ultrathin (4 nm) ITO layer contributes to retain high electron concentration and boost the mobility, while the overlayered a-IGZO layer mitigates Vth shift and off-current increase. The ITO/a-IGZO TFTs optimized via the thickness-dependent carrier concentration of ITO and band alignment manipulation in the bilayer considerably improved the device performance showing saturation field-effect mobility of >61 cm2/V·s (average of 58.2 ± 2 cm2/V·s), subthreshold slope of <120 mV/decade (average of 129 ± 12 mV/decade), and current on/off ratio of >5 × 1010. Various electrical characterization and technological computer-aided design simulation were performed to establish a plausible mechanism explaining enhanced mobility and Vth regulation in the ITO/a-IGZO TFTs. Additionally, systematic stability tests and spectroscopic analysis were carried out to evaluate the operational stability of the device, and it is suggested that Sn ion diffusing from ITO to the heterogeneous interface can be responsible for enhanced stability by reducing the oxygen vacancy defects.  相似文献   

15.
Aluminum oxide (Al2O3) dielectric layers were grown by a mist-chemical vapor deposition (mist-CVD) process at 300 °C, using solvent mixtures containing acetone and water. As the acetone to water ratio was varied from 9:1 to 7:3, the leakage current of Al2O3 at an electric field of 7 MV/cm2 decreased from 9.0 × 10?7 to 4.4 × 10?10 A/cm2, and the dielectric constant increased from 6.03 to 6.85 with improved hysteresis during capacitance-voltage measurements. Consequently, the most robust Al2O3 films were obtained at an acetone to water ratio of 7:3, with a dielectric constant (κ) close to the ideal value 7.0, and a breakdown field of approximately 9 MV/cm. Thin film transistors (TFTs) incorporating In-Sn-Zn-O (ITZO) as the semiconductor were fabricated with the Al2O3 (7:3) dielectric onto p++-Si substrates. The devices exhibit high electrical performance, with a high field effect mobility of 42.7 cm2V?1s?1, and a small subthreshold swing (S.S.) value of 0.44 V/decade.  相似文献   

16.
Lead-free piezoelectric material with excellent piezoelectric properties and high Curie temperature is necessary for practical applications. In this work, (Nd, Ce) co-doped CaBi4Ti4O15 (CBT) ceramics were prepared by the conventional solid-state reaction technique. The effect of (Nd, Ce) co-doping on the structure and resulting electrical properties of CBT ceramics was systematically investigated. The optimized comprehensive performances were obtained at x?=?0.075 with a large piezoelectric coefficient (19 pC/N), a low dielectric loss (0.073%) and a high Curie temperature (794?°C). More importantly, the ceramic also maintained a very high resistance and a low dielectric loss even at 400?°C (ρ?=?2.5?×?108 Ω?cm, tan δ?=?1.96%) and the d33 showed no sign of waning after annealed at 400?°C, which shows great potential for high temperature piezoelectric device applications. Related mechanisms for the enhancement of electrical properties were discussed.  相似文献   

17.
A varistor having ultra-high performance was developed from doped ZnO nanopowders using a novel composition consisting of only three (Bi, Ca and Co oxides) dopants. Improved varistor properties were obtained (breakdown field (Eb) 27.5?±?5?kVcm?1, coefficient of nonlinearity (α) 72?±?3 and leakage current density (Lc) 1.5?±?0.06?μAcm?2) which are attributed to the small grain size and grain boundary engineering by phases such as Ca4Bi6O13 and Ca0.89Bi3.11O5.56 along with Co+2 doping in the ZnO lattice. Complex impedance data indicated three relaxations at 25?°C and two relaxations at high temperature (>100?°C). The complex impedance data were fitted into two parallel RC model to extract electrical properties. Two stages of activation energy for DC conductivity were observed in these varistor samples where region I (<150?°C) is found to be due to shallow traps and region II (<225?°C) is due to deep traps. The novel composition is useful for commercial exploitation in wide range of surge protection applications.  相似文献   

18.
ZnO-deficient Zn2-xGeO4-x ceramics with 0.05?≤?x?≤?0.15 were synthesized because a ZnO secondary phase is formed in the stoichiometric Zn2GeO4 ceramics synthesized using micrometer-sized ZnO and GeO2 powders. The Zn1.9GeO3.9 ceramic sintered at 1000?°C showed a homogeneous Zn2GeO4 phase with good microwave dielectric properties: εr of 6.8, Q?×?f of 49,000?GHz, and τf of ?16.7?ppm/°C. However, its sintering temperature was still too high for it to be used as an advanced substrate for low-temperature co-fired ceramic devices. Therefore, various amounts of B2O3 were added to the Zn1.9GeO3.9 ceramics to reduce their sintering temperature. Owing to the formation of a B2O3-GeO2 liquid phase, these ceramics were well sintered at low temperatures between 925?°C and 950?°C. In particular, 15?mol% B2O3-added Zn1.9GeO3.9 ceramic sintered at 950?°C showed promising microwave dielectric properties for advanced substrates without the reaction with an Ag electrode: εr?=?6.9, Q?×?f?=?79,000?GHz, and τf?=??15?ppm/°C.  相似文献   

19.
The influence of BaO content (up to 15?mol%) on the crystallization behaviour, structure, thermal properties and microwave dielectric properties of the BaO-CaO-B2O3-SiO2 glasses and glass-ceramics system was investigated. The glasses were produced by melting at 1400?°C and quenching into water, and the glass-ceramics were produced via heat treatment at temperatures between 750 and 800?°C. The results of X-ray diffraction analysis showed that increasing the BaO content raised the resistance of the glass against crystallization and favoured the transformation of β-CaSiO3 and α-CaSiO3 phases, which crystallized in the Ba-free and in low BaO content compositions, into SiO2 and Ba4Si6O16, which crystallized in compositions with higher concentrations of BaO. The BaO content had little influence on the glass transition temperature (Tg) and the linear coefficient of thermal expansion (CTE), but strongly reduced the softening point (Ts). Even the addition of BaO as minor additives resulted in a dramatic reduction of the Ts; for example, the Ts decreased from 902?°C for the Ba-free composition to 682?°C for the BaO-containing one (5%). Low values of the dielectric constant (5.9?≤?εr ≤?6.63) and dielectric loss (1.12?×?10?3 ≤?tanδ?≤?3.15?×?10?3) were measured.  相似文献   

20.
Due to the limited temperature capability of current YSZ thermal barrier coating (TBC) material, considerable effort has been expended world-wide to research new candidates for TBC applications above 1200?°C. Our study suggested that Sc2O3 and Y2O3 co-doped ZrO2 (ScYSZ) had excellent t’ phase stability even after annealed at 1500?°C for 336?h. The thermal expansion coefficient of ScYSZ was comparable to the value of YSZ. The thermal conductivity of fully dense ScYSZ was in the range of 2.13–1.91?W?m?1?K?1 (25–1300?°C), approximately 25% lower than that of YSZ. Although the fracture toughness of dense ScYSZ was slightly lower than YSZ, an evident decline in elastic modulus was found. Additionally, thermal cycling lifetime of plasma sprayed ScYSZ coating (914 cycles) at 1300?°C was about 2.6 times longer than its YSZ counterpart. The superior comprehensive properties confirm that ScYSZ is a prospective candidate material for high-temperature TBC application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号