首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAX solid solutions (Ti,V)2AlC and (Cr,V)2AlC with Al2O3 addition were produced by solid state combustion involving aluminothermic reduction in the mode of self-propagating high-temperature synthesis (SHS). Starting materials included TiO2/V2O5/Al/Al4C3 and Cr2O3/V2O5/Al/Al4C3 powder mixtures. Attempts were made to attain (Ti1−xVx)2AlC and (Cr1−yVy)2AlC with the V content in terms of x and y from 0.1 to 0.7. Combustion exothermicity was increased by increasing V2O5 for the yield of a higher proportion of V at the substitution site, which not only increased the combustion temperature and reaction front velocity, but also facilitated the evolution of solid solutions. Due to insufficient reaction exothermicity, (Ti1−xVx)2AlC/Al2O3 in situ composites were only produced under x≥0.4. On the other hand, the formation of (Cr1−yVy)2AlC/Al2O3 was achieved with y from 0.1 to 0.7, because reduction of Cr2O3 is more energetic than that of TiO2. The laminated microstructure characteristic of the MAX ternary carbide was observed for both Al2O3-added (Ti,V)2AlC and (Cr,V)2AlC composites synthesized in this study.  相似文献   

2.
李建平  倪文  陈德平 《耐火材料》2003,37(5):277-281
利用自蔓延高温合成(SHS)原理,选择工业铝粉作为发热剂,菱镁矿为供氧剂,通过铝热反应,研制出了一种以镁砂为骨料,以镁铝尖晶石和炭质材料作为结合相的新型SHS转炉补炉料.对不同环境温度下补炉料的物相组成及显微结构进行了研究,并对合成尖晶石的固相反应原理及SHS产物相的烧结机制进行了探讨.结果表明补炉料中颗粒状的骨料方镁石与SHS反应产物尖晶石、非晶质碳、少量刚玉相和硅酸盐玻璃相共同构成含有气孔的交织结构,形成尖晶石、碳桥和陶瓷相与方镁石骨料的多重结合;SHS反应过程分碳酸盐矿物的分解反应、铝热氧化还原反应(即SHS反应)和合成尖晶石的固相烧结反应三步进行,其烧结受扩散机理控制.  相似文献   

3.
This paper deals with the formation of boron carbide (B4C) powders from Na2B4O7 + Mg + C system by self-propagating high-temperature synthesis (SHS) method. B4C without impurities could be obtained after the acid enrichment and distilled water washing. The reaction mechanism of SHS of B4C was proposed: the synthesis of B4C is a process involving the decomposition of Na2B4O7 into the intermediate phase B2O3, which reacts with Mg and carbon to form B4C.  相似文献   

4.
《Ceramics International》2017,43(13):9968-9972
Fabrication of WB2/mullite composites was conducted by combustion synthesis involving metallothermic reduction of WO3 and B2O3 in the mode of self-propagating high-temperature synthesis (SHS). Effects of excess B2O3 and pre-added and in situ formed SiO2 on formation of boride and mullite were investigated. Powder compacts with pre-added SiO2 were composed of xWO3+yB2O3+6Al +2SiO2 with y/x=1.0–2.0. For the Si-containing samples, the starting mixtures comprised mWO3+nB2O3+6Al +2Si with n/m=1.0–2.0. The Si-adopted samples are more exothermic than the SiO2-added samples, and the reaction temperature and combustion wave velocity decreases with increasing molar proportion of B2O3/WO3. The phase evolution was improved by adding excess B2O3 to compensate for its evaporation loss during the SHS process. As a result, the intermediates WB and WSi2 were significantly reduced in the final WB2/mullite composite of the SiO2-added sample with excess B2O3 of y/x=2.0. With the advantage of using Al and Si as reductants, the Si-based reaction of n/m=1.75 produced a WB2/mullite composite with negligible WB and WSi2.  相似文献   

5.
An experimental study on the preparation of two tungsten borides, WB and W2B5, was conducted by self-propagating high-temperature synthesis (SHS), during which borothermic reduction of WO3 and elemental interaction of W with boron proceeded concurrently. Powder mixtures with two series of molar proportions of WO3:B:W = 1:5.5:x (with x = 1.16–2.5) and 1:7.5:y (with y = 0.5–1.33) were adopted to fabricate WB and W2B5, respectively. The starting stoichiometry of the reactant compact substantially affected the combustion behavior and the phase composition of the final product. The increase of metallic tungsten and boron reduced the overall reaction exothermicity, leading to a decrease in both combustion temperature and reaction front velocity. The initial composition of the reactant compact was optimized for the synthesis of WB and W2B5. In addition to small amounts of W2B and W2B5, the powder compact of WO3 + 5.5B + 2 W produced WB dominantly. Optimum formation of W2B5 was observed in the sample of WO3 + 7.5B + 0.85W. Experimental evidence indicates that an excess amount of boron about 10–13% is favorable for the formation of WB and W2B5.  相似文献   

6.
The kinetics and stages of phase formation in the combustion wave of the MoAlB mixture are studied. The phase diagrams in the Mo-Al-B system were built using the AFLOW and Materials Project databases. The time-resolved X-ray diffraction analysis demonstrate that the MoAlB phase crystallizes from the melt without formation of any intermediate compounds. The structure of the synthesized ceramics was MoAlB lamellar grains 0.4 µm thick and ~2–10 µm long. Compact samples characterized by homogeneous structure and low residual porosity were obtained by hot pressing of SHS powders. The ceramic MoAlB has a layered structure, which is consistent with the morphology of the synthesis products. Mechanical and thermophysical properties are measured for samples obtained under optimal HP conditions at 1300 °C. The calculated value of the oxidation rate for MoAlB at 1200 °C for 30 h was 2.21?10?5 mg/(cm2?s). Oxide layer ~14 µm thick consists of elongated polygonal Al2O3 grains.  相似文献   

7.
Controlling the Mechanically Activated Self-propagating High-temperature Synthesis (MASHS) process is exceedingly important for production of MoSi2-based materials with a desired microstructure. Consequently, it seemed essential to carry out Time-Resolved X-ray Diffraction (TRXRD) experiments using an X-ray synchrotron beam (DM2, ESRF Grenoble) coupled with IR thermographic measurements to monitor in situ the structural and thermal evolutions taking place during SHS. The versatility of this technique and new possibilities offered by the design of new sample holders have already been proved. In addition, this work clearly shows that this equipment is perfectly adapted to investigating phase transitions occurring during the MASHS process in the Mo-Si system. The text was submitted by the authors in English.  相似文献   

8.
Microstructure developments of melt-grown Al2O3/YAG/ZrO2 ceramic bulks were investigated by controlling composition, cooling rate, heterogeneous nucleation sites and melt superheating treatment. The solidification microstructure of sample with hypereutectic composition (ZrO2 20 mol%) is finer than that with hypoeutectic or eutectic ones. With increasing the cooling rate, microstructure of melt-grown samples develops from colony to dendrite and finally to cell. The microscopy and the components of samples vary with the melt superheating temperature and the type of heterogeneous nucleation sites. The microstructure evolutions of melt-grown Al2O3/YAG/ZrO2 eutectic relate to the melt undercooling level and the solid–liquid interfaces stability.  相似文献   

9.
Silicon carbide particulate reinforced alumina matrix composites were fabricated using DIrected Metal OXidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with appropriate dopants along with a preform of silicon carbide has led to the formation of alumina matrix surrounding silicon carbide particulates. SiCp/Al2O3 ceramic matrix composites fabricated by the DIMOX process, possess enhanced mechanical properties such as flexural strength, fracture toughness and wear resistance, all at an affordable cost of fabrication. SiCp/Al2O3 matrix composites were investigated for mechanical properties such as flexural strength, fracture toughness and hardness; the composite specimens were evaluated using standard procedures recommended by the ASTM. The SiCp/Al2O3 ceramic matrix composites with SiC volume fractions from 0.35 to 0.43 were found to possess average bend strength in range 158-230 MPa and fracture toughness was found to be in range of 5.61-4.01 MPa√m. The specimen fractured under three-point loading as observed under scanning electron microscope was found to fail in brittle manner being the dominant mode. Further the composites were found to possess lower levels of porosity, among those prepared by DIMOX process.  相似文献   

10.
A composite electrocatalyst was developed to be fitted for the purpose of satisfying the features required for use as a solid oxide fuel cell functional anode material. The main functionality searched for was the ability to make the direct oxidation of carbon containing fuels in an SOFC without being severely coked. The present paper deals with the synthesis and characterization of such material. Therefore, ceramic electrocatalysts composed of CeAlO3, CeO2 and Al2O3 were synthesized by the amorphous citrate method and calcined at temperatures ranging from 300 °C to 900 °C. The synthesis procedures were designed to produce nanometric sized powders for which the calcination conditions were selected in order to fulfill requirements such as ease to be sintered; formation of selected phases upon calcinations at different temperatures; particle size control; surface area and morphology well suited for the production of ceramic suspensions to be processed into an SOFC functional anode. The main results have shown that increasing the calcination temperature under an oxidizing atmosphere induces the CeAlO3 phase with a tetragonal perovskite type structure to undergo a phase transformation to CeO2 (and Al2O3) with cubic fluorite type structure. However, the structure is able to be reversed and reduced back to the CeAlO3 phase if calcined under a hydrogen atmosphere. The increase in the calcination temperature increases the particle average size, reduces the surface area and increases the material density, considering the same phase and crystalline structure. It was shown that the synthesis and calcinations procedures hinder the crystallographic identification of the presence of alumina.  相似文献   

11.
High burnup is a goal for further development of advanced nuclear power in the future. However, along with the increase of burnup, it becomes more diffidult to control reactor reactivity, which affects the operation safety of the nuclear reactor. Al2O3/B4C burnable poison materials widely used in pressurized water reactor currently will not meet the requirements of burnable poison materials in high burnup nuclear power. Because of the better performance of ZrO2/Gd2O3 burnable poison materials than that of Al2O3/B4C, this paper studies the preparation of ZrO2/Gd2O3 composite ceramic materials by the coprecipitation method. The experimental results show that at the sintering temperature of 1500–1650 °C, ZrO2/Gd2O3 composite ceramic grains are small, compact and uniform with the generation of homogeneous solid solution. At 1600 °C, ZrO2–10%Gd2O3 has the highest density and mechanical strength.  相似文献   

12.
Directionally solidified Al2O3-based eutectic ceramic in situ composites with inherently high melting point, low density, excellent microstructure stability, outstanding resistance to creep, corrosion and oxidation at elevated temperature, have attracted significant interest as promising candidate for high-temperature application. This paper reviews the recent research progress on Al2O3-based eutectic ceramic in situ composites in State Key Laboratory of Solidification Processing. Al2O3/YAG binary eutectic and Al2O3/YAG/ZrO2 ternary eutectic ceramics are prepared by laser zone melting, electron beam floating zone melting and laser direct forming, respectively. The processing control, solidification characteristic, microstructure evolution, eutectic growth mechanism, phase interface structure, mechanical property and toughening mechanism are investigated. The high thermal gradient and cooling rate during solidification lead to the refined microstructure with minimum eutectic spacing of 100 nm. Besides the typical faceted/faceted eutectic growth manner, the faceted to non-faceted growth transition is found. The room-temperature hardness HV and fracture toughness KIC are measured with micro-indentation method. For Al2O3/YAG/ZrO2, KIC = 8.0 ± 2.0 MPa m1/2 while for Al2O3/YAG, KIC = 3.6 ± 0.4 MPa m1/2. It is expectable that directionally solidified Al2O3-based eutectic ceramics are approaching practical application with the advancement of processing theory, technique and apparatus.  相似文献   

13.
Directionally solidified Al2O3/Er3Al5O12(EAG)/ZrO2 ternary eutectic/off-eutectic composite ceramics with high density, homogeneous microstructures, well-oriented growth have been prepared by laser floating zone melting at different solidification rates from 4 to 400 µm/s. Uniform and stable melting zone is obtained by optimizing temperature field distribution to keep continuous and stable eutectic growth and prevent from cracks and defects. The as-solidified composite ceramic exhibits complexly irregular eutectic structure, in which the eutectic spacing is rapidly refined but dotted ZrO2 number inside Al2O3 phase is decreased as increasing the solidification rate. The formation mechanism of ZrO2 distributed inside Al2O3 matrix is revealed by examining the depression of solid/liquid interface. Furthermore, after heat exposure 1500 °C for 200 h, the eutectic microstructure only shows tiny coarsening, which indicates it has excellent microstructural stability. As increasing the ZrO2 content, the fracture toughness can be improved up to 3.5 MPa m1/2 at 20.6 mol% ZrO2.  相似文献   

14.
Al2O3/diopside ceramic composites with good mechanical properties were prepared by uniaxial hot-pressing and their biological activity in simulated body fluid was studied by SEM, XRD, FT-IR and EPMA. SEM micrographs showed a lath-like apatite layer to form on the soaked composite surface, whose good biological activity may be of some promise for biomedical application.  相似文献   

15.
An Al2O3-ZrO2 support was prepared by grafting a zirconium precursor onto the surface of commercial γ-Al2O3. A physical mixture of Al2O3-ZrO2 was also prepared for the purpose of comparison. Ni/Al2O3-ZrO2 catalysts were then prepared by an impregnation method, and were applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). The effect ZrO2 and preparation method of Al2O3-ZrO2 on the performance of supported nickel catalysts in the steam reforming of LNG was investigated. The Al2O3-ZrO2 prepared by a grafting method was more efficient as a support for nickel catalyst than the physical mixture of Al2O3-ZrO2 in the hydrogen production by steam reforming of LNG. The well-developed tetragonal phase of ZrO2 and the high dispersion of ZrO2 on the surface of γ-Al2O3 were responsible for the enhanced catalytic performance of Ni/Al2O3-ZrO2 prepared by way of a grafting method.  相似文献   

16.
In this paper, the Al2O3-20 wt.%ZrO2 (8 wt.%Y2O3) feedstocks were fabricated and treated by spray drying, calcination, and plasma treatment technology. The morphology of feedstocks was characterized by scanning electron microscope (SEM). The phase structure and grain size were analyzed by X-Ray diffraction (XRD). The flowability and density were measured by Hall Flowmeter and density instrument, respectively. The sphericity and flowability of feedstocks treated by plasma flame increased greatly compared with that of the feedstocks without plasma treatment, and the particle surfaces were very smooth. The optimum flowability was obtained when the critical plasma spray parameter (CPSP) was 363. The compactness also increased greatly with the increment of CPSP, and the maximum value of compactness was got with CPSP of 325. Calcination can make the grain grow and plasma treatment can lead to the decrement of grain size. The phase structure of Al2O3 did not change, which was α-Al2O3 in the composites. The phase structure of ZrO2 (8 wt.%Y2O3) changed from t-phase to c-phase which was affected greatly by plasma treatment.  相似文献   

17.
La0.6Sr0.4Co0.2Fe0.8O3−δ powder was synthesized by a combined EDTA-citrate complexing process via low-temperature auto-combustion synthesis with NH4NO3 as an oxidizer and a combustion trigger. Two novel methods were explored to improve this auto-combustion technology with reduced NH4NO3 addition: the use of La0.6Sr0.4Co0.2Fe0.8O3−δ as the combustion catalyst and the application of asymmetric sol–gel process to provide the precursor with different NH4NO3 concentrations. The prepared perovskite powder was characterized by BET, SEM, XRD and iodometric titration techniques. The catalytic performance of the powder was also examined in the decomposition of peroxide hydrogen. Experimental results indicate that powders from catalytic combustion and asymmetric precursor routes have more advantages in terms of better crystallites, higher specific surface area, higher B-site valence state, improved sintering capability and better catalytic performance in peroxide hydrogen decomposition than that from the synthesis with uniform NH4NO3 distribution.  相似文献   

18.
Supported molybdenum and tungsten carbides were synthesized by temperature-programmed reactions. These materials were characterized by XRD, EDS analysis, HRTEM and CO chemisorption. Hydrogenation of tetralin was carried out at a total pressure of 4 MPa (3.06 MPa of H2), at 573 K, without or with sulfur (200 ppm of sulfur as DMDS). The resulting activities were compared with those of MoS2/Al2O3 and Pt (1% (w/w) metal loading) supported on Al2O3 or SiO2. In the absence of sulfur, WC/Al2O3 showed an initial activity similar to that of Pt/SiO2, higher than that of MoS2/Al2O3 but lower than that of Pt/Al2O3. In the presence of H2S, WC/Al2O3 showed a steady-state activity similar to that of Pt/Al2O3 (which suffered a marked deactivation). Post-reaction characterization did not show any sulfur poisoning of the supported carbides. Therefore the supported carbides are sulfur-tolerant and promising catalysts for the hydrogenation of aromatics in diesel fuels in the presence of small amounts of S-containing compounds.  相似文献   

19.
Al2O3 coatings with large specific surface were prepared on cast nickel-based superalloy K418 by cathode plasma electrolytic deposition (CPED) in aqueous solutions at different concentrations. The significance of energy consumption and a simple calculation method during CPED were proposed, and the influence of electrolyte concentration on current density-voltage curve, energy consumption, and microstructure of coatings were studied. It was found that increasing the concentration of electrolyte can effectively reduce the current density at the initial stage while prolonging the deposition time and stepping up the energy consumption of whole coating preparation. The morphology observation results showed that the pore size of Al2O3 coatings enlarges with the increase of the concentration, and the optimum electrolyte concentration is 0.5–1 mol L?1. Under this condition, the new method of oxidation pretreatment at 950 ℃ on samples for 30 min can efficiently decrease the current density during the early stage of preparation, which is beneficial to the deposition of complex-shaped samples with large size.  相似文献   

20.
Preparation of the (Ti1−xNbx)2AlC solid solution (formed from the Mn+1AXn or MAX carbides, where n = 1, 2, or 3, M is an early transition metal, A is an A-group element, and X is C) with x = 0.2-0.8 was investigated by self-propagating high-temperature synthesis (SHS). Nearly single-phase (Ti,Nb)2AlC was produced through direct combustion of constituent elements. Due to the decrease of reaction exothermicity, the combustion temperature and reaction front velocity decreased with increasing Nb content of (Ti1−xNbx)2AlC formed from the elemental powder compacts. In addition, the samples composed of Ti, Al, Nb2O5, and Al4C3 were adopted for the in situ formation of Al2O3-added (Ti,Nb)2AlC. The SHS process of the Nb2O5/Al4C3-containing sample involved aluminothermic reduction of Nb2O5, which not only enhanced the reaction exothermicity but also facilitated the evolution of (Ti,Nb)2AlC. Based upon the XRD analysis, two intermediates, TiC and Nb2Al, were detected in the (Ti,Nb)2AlC/Al2O3 composite and their amounts were reduced by increasing the extent of thermite reduction involved in the SHS process. The laminated microstructure characteristic of the MAX carbide was observed for both monolithic and Al2O3-added (Ti,Nb)2AlC solid solutions synthesized in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号