首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continuous carbon fiber reinforced ZrB2-SiC composite was fabricated successfully via a hybrid technique based on nano ceramic slurry impregnation, polymer infiltration and pyrolysis and low-temperature hot pressing. The Cf/ZrB2-SiC composites exhibited non-brittle fracture modes and the chemical interaction at the fiber/matrix interfaces was effectively inhibited owing to the low sintering temperature. The S2-Cf/ZrB2-SiC composite presented the highest mechanical properties with fracture toughness of 4.47?±?0.15?MPa?m1/2 and the work of fracture of 877?J/m2, which was attributed to the multiple length-scale toughening mechanisms including the macroscopic toughening mechanisms of crack deflection and crack branching, the micro toughening mechanisms of fiber bridging and fiber pull-out. This work presented a novel and effective method to fabricate high-performance continuous carbon fiber reinforced ceramic matrix composites.  相似文献   

2.
Room temperature static and cyclic fatigue of ZrB2-32?vol% SiC and ZrB2-45?vol% SiC particulate ceramic composites has been studied. It was established that the presence of grain bridging plays an important role in the lifetime and time dependent mechanical performance of ZrB2-SiC composites. It was also established that the cohesive strength of grain boundaries of the composites was a determining factor if grain bridging would occur during crack growth, as the grain boundaries strength would determine the pathway of the moving crack. Grain bridging was limited in ZrB2-32?vol% SiC leading to the absence of a cyclic fatigue effect, while grain bridging indeed occurred in ZrB2-45?vol%SiC contributing to a cyclic fatigue effect which limits the lifetime of the composite. Such differences were responsible for the occurrence of R-curve behavior in ZrB2-SiC ceramic composites.  相似文献   

3.
The high sintering temperature and interface interaction seriously degraded the toughening effects of continuous carbon fiber in ZrB2-SiC ceramic. The pyrolytic carbon coated carbon fiber reinforced ZrB2-SiC composite (Cf-PyC/ZrB2-SiC) with desirable properties was successfully achieved via brushing nano ZrB2-SiC slurry followed by spark plasma sintering at relatively low sintering temperature. The fabricated Cf-PyC/ZrB2-SiC composite presented a non-brittle fracture feature and a remarkable enhancement in comparison with the ZrB2-SiC composite reinforced by the as-received carbon fiber (Cf-AS/ZrB2-SiC). The fracture toughness and critical crack size were increased from 5.97?±?0.18–7.66?±?0.24?MPa?m1/2 and from 91.6 to 164.5?µm, respectively. A high work of fracture of 1915?J/m2 for Cf-PyC/ZrB2-SiC composite was achieved, almost four times higher than that of the Cf-AS/ZrB2-SiC composite (463?J/m2). Multiple toughening mechanisms contributed to such enhancement, such as crack deflection, fiber bridging, fiber pull-out and crack branching. This work provides a feasible approach to fabricate high-performance fiber reinforced ceramic composites having a high work of fracture.  相似文献   

4.
Herein, we prepare phase-pure ZrB2-SiC composite powders by molten-salt-mediated reduction of ZrSiO4/B2O3/activated carbon mixtures with Mg, showing that the phase composition and morphology of the above composites is influenced by firing temperature, B:Zr and C:Si molar ratios, and the amount of excess Mg. Notably, phase-pure ZrB2-SiC powder with a ZrB2:SiC weight ratio of ~75:25 could be obtained by 3-h firing at 1200?°C, i.e., at a temperature lower than that used for conventional carbothermal reduction by at least 200?°C. As-prepared ZrB2-SiC composites exhibited grain sizes of several microns and comprised SiC nanoparticles well distributed in the ZrB2 matrix. Finally, the oxidation activation energies of the prepared ZrB2 and ZrB2-SiC powders were determined as 326 and 381?kJ/mol, respectively, which demonstrated that the introduction of SiC improved the oxidation resistance of monolithic ZrB2.  相似文献   

5.
ZrC-ZrB2-SiC composites were prepared by arc-melting in Ar atmosphere using ZrC, ZrB2 and SiC as starting materials. The ternary eutectic composition of 20ZrC-30ZrB2-50SiC (mol%) was first identified. SiC about 7?μm in length and 500?nm in diameter, ZrC about 4 μm in length and 1 μm in diameter, in rod-like microstructure, were uniformly dispersed in ZrB2 matrix of eutectic composite. The eutectic temperature of ZrC-ZrB2-SiC composite was approximately 2550?K. The Vickers Hardness and fracture toughness of eutectic composite was 23?GPa and 6.2?MPa?m1/2, respectively. The electrical conductivity decreased from 7.2?×?107 to 1.75?×?106?S?m?1 with the temperature increasing from 287 to 800?K. The thermal conductivity decreased from 85 to 61?W?K?1?m?1 with increasing temperature from 287 to 973?K.  相似文献   

6.
Spherical instrumented scratch behavior of ZrB2-SiC composites with and without hybrid boron nitride nanotubes (BNNTs) and boron nitride nanoplatelets (BNNPs) was investigated in this research. Typical brittle fracture such as microcracks both in and beyond the residual groove and grain dislodgement was observed in ZrB2-SiC composite, while hybrid BN nanofiller reinforced ZrB2-SiC composite exhibited predominantly ductile deformation. The peculiar three-dimensional hybrid structure in which BNNPs retain their high specific surface area and de-bundled BNNTs extend as tentacles contributes to the improved tolerance to brittle damage. Additionally, easier grain sliding due to BN hybrid nanofillers located at grain boundaries and these BN hybrid nanofillers attached on the scratch surface would provide significant self-lubricating effect to reduce lateral force during scratch and to alleviate contact damage.  相似文献   

7.
A study has been carried out to examine the effect of LaB6 addition on the compressive creep behavior of ZrB2-SiC composites at 1300–1400°C under stresses between 47 and 78 MPa in laboratory air. The ZrB2-20 vol% SiC composites containing LaB6 (10% in ZSBCL-10 and 14% in ZSBCL-14) besides 5.6% B4C and 4.8% C as additives were prepared by spark plasma sintering at 1600°C. Due to cleaner interfaces and superior oxidation resistance, the ZSBCL-14 composite has exhibited a lower steady-state creep rate at 1300°C than the ZSBCL-10. The obtained stress exponent (n ∼ 2 ± 0.1) along with cracking at ZrB2 grain boundaries and ZrB2-SiC interfaces are considered evidence of grain boundary sliding during creep of the ZSBCL-10 composite. However, the values of n ∼ 1 and apparent activation energy ∼700 kJ/mol obtained for the ZSBCL-14 composite at 1300–1400°C suggest that ZrB2 grain boundary diffusion is the rate-limiting mechanism of creep. The thickness of the damaged outer layer containing cracks scales with temperature and applied stress, indicating their role in facilitating the ingress of oxygen causing oxide scale growth. Decreasing oxidation-induced defect density with depth to a limit of ∼280 μm, indicates the predominance of creep-based deformation and damage at the inner core of samples.  相似文献   

8.
《Ceramics International》2020,46(11):19209-19216
The impact of SiAlON on densification behavior and microstructure of the ZrB2-SiC composite was investigated. ZrB2, SiC, and SiAlON were used as the initial materials to produce ZrB2-SiC composite by hot pressing at 1900 °C. A fully dense composite was obtained having ~99.9% relative density. High-resolution X-ray diffraction (HRXRD) assessment verified the in-situ formation of ZrC, and the presence of residual carbon, SiAlON, and ZrB2 and SiC phases in the as-sintered ceramic. Furthermore, the thermodynamic calculations confirmed the results attained by HRXRD. In addition, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized for the microstructural investigation. SEM fractographs indicated the impact of SiAlON on the hindering of grain growth and the formation of flaky phases (graphitized carbon or solidified liquid phase) at the grain boundaries. TEM studies revealed the presence of a transparent glassy phase at the particle interfaces. A significant impact of liquid phase sintering was also affirmed in the clean interfaces.  相似文献   

9.
The three dimensional needle-punched carbon fiber reinforced ZrB2-SiC composite (Cf/ZrB2-SiC) with highly uniform distribution was fabricated successfully via a novel vibration-assisted slurry impregnation and low-temperature (1450 °C) hot pressing technique using nanosized ZrB2 powders. The carbon fiber/ceramic matrix interfaces were clear without obvious reaction products detected by the high resolution transmission electron microscopy (HR-TEM), indicating the degradation of carbon fiber was effectively inhibited. The Cf/ZrB2-SiC composite exhibited a typical non-brittle fracture feature with a high work of fracture of 1104 J/m2, which was approximately twice that of composite fabricated only by slurry impregnation and hot pressing. The enhancement in work of fracture was attributed to multiple toughening mechanisms of continuous carbon fibers such as extensive fiber bridging and pull-out accompanied by obvious crack deflection and branching. This work provides a valuable potential of preparing continuous carbon fiber reinforced ceramic composites with uniform component distribution and enhanced mechanical properties.  相似文献   

10.
The toughening mechanism in continuous fiber toughened ZrB2-SiC ceramic matrix (Cf/ZrB2-SiC) composites was studied upon introduction of pyrolytic carbon coating at the fiber/matrix interface. The real-time deformation behavior, surface crack initiation and evolution of Cf/ZrB2-SiC composites under tensile load were studied using in-situ scanning electron microscopy (SEM) to determine the typical damage modes and toughening mechanisms. A refined microscopic representative volume element (RVE) inserting the cohesive zone elements was established to study the PyC interface layer damage by using finite element method. It was found that PyC interface layer damage induced by thermal residual stress (TRS) was one of critical factors affecting the mechanical performance of the Cf/ZrB2-SiC composites. The critical thickness of the interface layer was also further determined by analyzing the effect of interface layer thickness on the distribution of TRS, which can guide the design of PyC interface layer for manufacturing the Cf/ZrB2-SiC composites.  相似文献   

11.
To improve the corrosion resistance of the carbon fiber reinforced magnesium matrix composites (Cf/Mg composites), ZrO2 and ZrB2-SiC/ZrO2 composite coatings were prepared by supersonic atmospheric plasma spraying (SAPS) on Cf/Mg composites. The microstructure and phase composition of the coatings before and after the corrosion test were investigated. Open circuit potential and potentiodynamic polarization tests were measured at room temperature. Results revealed that the corrosion current density (icorr) of the ZrO2 coated Cf/Mg composites decreased by one order while the ZrB2-SiC/ZrO2 coated Cf/Mg composites reduced by two orders. Compared with Cf/Mg composites, the corrosion potential (Ecorr) of the ZrO2 and ZrB2-SiC/ZrO2 coated Cf/Mg composites increased by 220.5?mV and 1021.8?mV respectively, indicating that the ZrB2-SiC/ZrO2 composite coatings greatly improve the corrosion resistance of Cf/Mg composites. The uniform distribution of the SiC particles with small grain size in ZrB2 is responsible for the densification of the coating. The ZrB2-SiC/ZrO2 composite coatings provide a barrier for the substrate to impede the entry of Cl- in the corrosion solution, thus exhibiting a better corrosion resistance than the ZrO2 coating.  相似文献   

12.
Joining is crucial for ultra-high temperature ceramics (UHTCs) to be used in demanding environments due to the difficulty in manufacturing large and complex ceramic components. In this study, ZrB2-SiC composite UHTCs parts were joined via Ni foil as filler, and the mechanical properties and oxidation behaviour of the fabricated ZrB2-SiC/Ni/ZrB2-SiC (ZS/Ni/ZS) joint were investigated. Firstly, dense ZrB2-SiC composites were prepared from nano-sized powders by spark plasma sintering (SPS). The ZrB2-SiC parts were then joined using SPS. Furthermore, the elastic modulus, hardness, shear strength and high temperature oxidation behaviour of the ZS/Ni/ZS joint were examined to evaluate its properties and performance. The experimental results showed that the ZrB2-SiC parts were effectively joined via Ni foil using SPS and the resultant microstructures were free from any marked defects or residual metallic layers in the joint. Although the elastic modulus and hardness in the joining zone were lower than those in the base ZrB2-SiC ceramics, the shear strength of the joint reached ∼161 MPa, demonstrating satisfactory mechanical properties. Oxidation tests revealed that the ZS/Ni/ZS joint possesses good oxidation resistance for a wide range of elevated temperatures (800–1600 oC), paving the way for its employment in extreme environments.  相似文献   

13.
Herein, biomimetic Cf/ZrB2-SiC ceramic composites with bouligand structures are fabricated by combining precursor impregnation, coating, helical assembly and hot-pressing sintering. First, Cf/ZrB2-SiC ceramic films are achieved through a precursor impregnation method using polycarbosilane (PCS). Second, the PCS-Cf/ZrB2-SiC ceramic films are coated with ZrB2 and SiC ceramic layers. Finally, hot-pressing sintering is employed to densify helical assembly Cf/ceramic films with a fixed angle of 30°. The microstructures and carbon fiber content on the mechanical properties of biomimetic Cf/ZrB2-SiC ceramic composites are analyzed in detail. The results show that the coated ceramic layer on PCS-Cf/ZrB2-SiC films can heal the cracks formed by pyrolysis of PCS, and the mechanical properties are obviously improved. Meanwhile, the mechanical properties could be tuned by the contents of the carbon fiber. The toughening mechanisms of Cf/ZrB2-SiC ceramic composites with bouligand structures are mainly zigzag cracks, crack deflection, multiple cracks, carbon fiber pulling out and bridging.  相似文献   

14.
The high temperature compressive strength behavior of zirconium diboride (ZrB2)-silicon carbide (SiC) particulate composites containing either carbon powder or SCS-9a silicon carbide fibers was evaluated in air. Constant strain rate compression tests have been performed on these materials at room temperature, 1400, and 1550 °C. The degradation of the mechanical properties as a result of atmospheric air exposure at high temperatures has also been studied as a function of exposure time. The ZrB2-SiC material shows excellent strength of 3.1 ± 0.2 GPa at room temperature and 0.9 ± 0.1 GPa at 1400 °C when external defects are eliminated by surface finishing. The presence of C is detrimental to the compressive strength of the ZrB2-SiC-C material, as carbon burns out at high temperatures in air. As-fabricated SCS-9a SiC fiber reinforced ZrB2-SiC composites contain significant matrix microcracking due to residual thermal stresses, and show poor mechanical properties and oxidation resistance. After exposure to air at high temperatures an external SiO2 layer is formed, beneath which ZrB2 oxidizes to ZrO2. A significant reduction in room temperature strength occurs after 16-24 h of exposure to air at 1400 °C for the ZrB2-SiC material, while for the ZrB2-SiC-C composition this reduction is observed after less than 16 h. The thickness of the oxide layer was measured as a function of exposure time and temperatures and the details of oxidation process has been discussed.  相似文献   

15.
ZrB2-SiC composite powders were synthesized through one-step reduction process of ZrO2, B4C, carbon black, silicon or silica under flowing argon. Effects of B4C contents, calcination temperatures and different silicon sources on the phase composition and morphology were investigated. Combining the X-ray diffraction (XRD) results and scanning electron microscope (SEM) images, the spherical ZrB2-SiC powders ranging from 100?nm to 300?nm would be prepared with silicon at 1500?°C for 60?min when n(B)/n(Zr) was at 2.4. As using silica as the raw material, the obtained ZrB2 and SiC particles in the powders exhibited different shapes and sizes. The SiC grains were uniformly formed among the ZrB2 grains.  相似文献   

16.
ZrB2-SiC composites with different SiC content were prepared through aqueous tape casting and hot pressing. The influences of dispersant, SiC content and binder content on the rheological properties of slurries were investigated and the conditions for preparing stable ZrB2-SiC suspensions were optimized. After tape casting and drying, the green ZrB2-SiC tapes showed good flexibility, lubricious surface and homogeneous microstructure. The ZrB2 ceramics could be densified to 97.2% after hot-pressing, while the ZrB2 containing 20 and 30 vol% SiC ceramics were nearly fully densified (>99%). The sintered ZrB2-20 vol% SiC ceramic had improved mechanical properties compared with ZrB2 ceramic. Further increase in SiC content resulted in lower flexural strength and fracture toughness. SEM and TEM showed a fine microstructure with a clear grain boundary. The fracture mode changed from intragranular type for ZrB2 to both intragranular and intergranular type for ZrB2-SiC composites.  相似文献   

17.
We investigated the oxidation behavior and the effect of the amount of SiC added on oxidation resistance in both hot-pressed ZrB2-MoSi2-SiC composites, 55ZrB2-40MoSi2-5SiC and 40ZrB2-40MoSi2-20SiC (vol.%), exposed to dry air at 1500 °C for up to 10 h. Quantitative electron microprobe analysis characterizations of the chemical compounds of post-oxidized composites were carried out. Parabolic oxidation behavior was observed for both composites. The addition of SiC improved the oxidation resistance of ZrB2-MoSi2-SiC composites, and the improvement enhanced with amount of SiC added. The microstructure of the post-oxidized composites consisted of two characteristic regions: oxidized reactive region and unreactive bulk material region. The oxidized reactive region divided into an outermost dense silica-rich scale layer and oxidized reactive mixture layer. The improvement of oxidation resistance with SiC addition is associated with the presence of a thicker dense outermost scale layer which inhibited inward diffusion of oxygen through it.  相似文献   

18.
The effects of SiC content (10–40 vol.%) on electrical, thermal and ablation properties of pressureless sintered ZrB2-SiC composites showing interfacial segregation of W-rich phases have been studied. The electrical resistivity was measured by four-probe method, whereas thermal diffusivity and coefficient of thermal expansion (CTE) were determined using laser-flash method and thermo-mechanical analyzer, respectively. Whereas thermal conductivities calculated from experimentally obtained thermal diffusivity values are found to be the highest for the ZrB2-20 SiC composite, both electrical conductivity and CTE decrease with increasing SiC content. The specimens were subjected to thermal shock by soaking at 800–1200 °C, followed by water-quenching. Further, some specimens were exposed to oxyacetylene flame (2200 °C) for 10 min. The damage was estimated from changes in mass, Young’s modulus, and hardness. The highest thermal shock and ablation resistance have been observed for the ZrB2-20 SiC composite, as thermal properties and formation of protective oxide scale play key role.  相似文献   

19.
A successful approach to the development of tailored cutting tool materials requires the development of innovative concepts at each step of manufacturing, from the material design, synthesis of composite powders, to their processing and sintering. In this paper, a computational design approach is applied in the development of reinforced ceramic-based cutting tool inserts with tailored structural and thermal properties. Several potential filler materials are considered at the material design stage for the improvement of structural and thermal properties of a selected matrix material. Properties, such as an improved thermal conductivity and reduced coefficient of thermal expansion are essential for an effective cutting tool insert to absorb thermal shock at varying temperatures. In addition, structural properties such as elastic modulus have to be maintained within a moderate range. A mean-field homogenization theory and effective medium approximation using an in-house code are applied for predicting potential optimum structural and thermal properties for the required application. This is done by considering the effect of inclusions as a function of volume fraction and particle size in the ceramic base matrix. Single inclusion composites such as alumina-silicon (Al2O3-SiC) and alumina-cubic boron nitride (Al2O3-cBN) as well as hybrid composite such as alumina-silicon-cubic boron nitride (Al2O3-SiC-cBN) are developed using the Spark Plasma Sintering (SPS) process in line with the designed range of filler size and volume fraction to validate the computational results. It is found that the computational material design approach is precise enough in predicting the target properties of a designed hybrid composite material for cutting tool inserts.  相似文献   

20.
Zirconium diboride and boron carbide particles were used to improve the ablation resistance of carbon–carbon (C–C) composites at high temperature (1500 °C). Our approach combines using a precursor to ZrB2 and processing them with B4C particles as filler material within the C–C composite. An oxyacetylene torch test facility was used to determine ablation rates for carbon black, B4C, and ZrB2–B4C filled C–C composites from 800 to 1500 °C. Ablation rates decreased by 30% when C–C composites were filled with a combination of ZrB2–B4C particles over carbon black and B4C filled C–C composites. We also investigated using a sol–gel precursor method as an alternative processing route to incorporate ZrB2 particles within C–C composites. We successfully converted ZrB2 particles within C–C composites at relatively low temperatures (1200 °C). Our ablation results suggest that a combination of ZrB2–B4C particles is effective in inhibiting the oxidation of C–C composites at temperatures greater than 1500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号