首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The α-MoO3 ceramics were prepared by uniaxial pressing and sintering of MoO3 powder at 650 °C and their structure, microstructure, densification and sintering and microwave dielectric properties were investigated. The sintering temperature of α-MoO3 was optimized based on the best densification and microwave dielectric properties. After sintering at 650 °C the relative permittivity was found to be 6.6 and the quality factor was 41,000 GHz at 11.3 GHz. The full-width half-maximum of the A1g Raman mode of bulk α-MoO3 at different sintering temperatures correlated well with the Qf values. Moreover, the sintered samples showed a temperature coefficient of the resonant frequency of ?25 ppm/°C in the temperature range from ?40 to 85 °C and they exhibited a very low coefficient of thermal expansion of ±4 ppm/°C. These microwave dielectric properties of α-MoO3 will be of great benefit in future MoO3 based materials and their applications.  相似文献   

2.
《Ceramics International》2020,46(12):20477-20487
Molybdenum oxide (MoO3) films were prepared on Si (100) at room temperature using radiofrequency (RF) magnetron sputtering technique. The films were annealed in the presence of air at different temperatures from 100 to 550 °C. The as-prepared films were amorphous as revealed by the X-ray diffraction analysis. Post-deposition annealing of MoO3 film enhanced its crystalline structure, showing β-MoO3 phase at 100 °C and a mixture of α-MoO3 and β-MoO3 phases at 300 °C. The crystallinity of α-MoO3 improved with increasing the annealing temperature to 500 °C, however, the β-MoO3 phase became amorphous. The film was dissolved at 550 °C as no diffraction peak of MoO3 was detected at this temperature. The band gap of MoO3 was evaluated through ultraviolet–visible spectroscopy. The results showed a decrease in the band gap from 3.70 to 3.39 eV with increasing the annealing temperature to 500 °C. The film with optimum crystalline quality was used to fabricate a metal-semiconductor-metal (MSM) photodetector device. The photo-detection characteristics of the film were studied after the deposition of Nickel contacts on MoO3 using a metal mask having interdigitated electrodes. The fabricated device exhibited a high current gain and sensitivity under 365 nm UV illumination. The responsivity of the device under UV light was 0.41 A/W at 7 V. The rise and decay time of UV photodetector were 0.32 and 0.23 s respectively. These findings suggested that the MoO3 film with dominant orthorhombic α-phase can potentially be used for the photodetector application.  相似文献   

3.
β-MoO3 is a monoclinic phase of MoO3; it has been shown to be a promising material that can replace α-MoO3 in chemical, optical, electronic, and electrochromic applications. However, the difficulty in synthesizing β-MoO3 with a one-dimensional (1D) morphology has limited its use in applications requiring a large specific surface area. In the present work, β-MoO3 whiskers were prepared by thermally evaporating α-MoO3 powder in a tube furnace at temperatures (Tf) from 750 to 1000°C and under flowing O2 gas. The collected samples were identified as mainly β-MoO3 by X-ray diffraction measurements, and the highest purity β-MoO3 was obtained at Tf = 1000°C. Scanning and transmission electron microscopy observations showed that whiskers with a width of 10 nm were successfully synthesized by this method. The whiskers were confirmed to be β-MoO3 via lattice image analysis. Measurements of the temperature distribution in the tube furnace and comparisons with the Mo–O phase diagram led to the conclusion that the whiskers formed via a vapor–solid route. Prepared β-MoO3 whiskers were compared with α-MoO3 powder via the X-ray photoelectron spectroscopy characterization method. By elucidating the β-MoO3 whisker synthesis mechanism, this research provides guidance for the large-scale production of β-MoO3 whiskers.  相似文献   

4.
With the integrative transformation of non α-tocopherols, glycerides, free fatty acids, and methyl alcohol in cottonseed oil deodorizing distillate as the target reaction, we prepared highly catalytic SO42?/ZrO2-MoO3 solid acid catalyst by precipitation–wet impregnation. The optimal conditions for catalyst preparation were then determined by varying sulfuric acid concentration, MoO3 loading factor, calcination temperature, and calcination time. The structure of SO42?/ZrO2-MoO3 solid acid catalyst was then examined by X-ray diffraction (XRD), Brunauer–Emmett–Teller measurements, scanning electron microscopy, and other methods. Results show that the MoO3 loading factor (percentage weight ratio of MoO3 to ZrO2), impregnation concentration of sulfuric acid, and calcination temperature were the most important factors that influenced catalytic activity. The optimal conditions for catalyst preparation were an MoO3 loading factor of 20%, a sulfuric acid impregnation concentration of 0.75 mol/L, a calcination temperature of 550 °C, and a calcination time of 6 h. The obtained catalyst exhibited the highest catalytic activity under these conditions.  相似文献   

5.
《Ceramics International》2016,42(16):18318-18323
MoS2 thin films were prepared by radio frequency (RF) magnetron sputtering and then annealed in air. X-ray diffraction (XRD), field-emission electron scanning microscopy (FESEM) and transmission electron microscopy (TEM) were adopted to characterize the phase structure and surface morphology. Interestingly, upon thermal annealing in air, MoS2 thin films changed into α-MoO3 with mazy morphology, and the thin films were covered by MoO3 nano-sheets with a length of 30–50 nm and a width of 10 nm. α-MoO3 thin films with mazy morphology showed excellent response to NO gas at room temperature. The response of 5% and 92% was obtained at 5 ppm and 200 ppm, respectively, and the response and recovery times were 30 s and 1500 s. Moreover, the mazy structure of MoO3 exhibited good selectivity to NO gas with respect to SO2, NH3 and H2 gases. The high surface-to-volume ratio was the dominant factor for high sensing performance.  相似文献   

6.
《Ceramics International》2022,48(17):25079-25085
As a two-dimensional crystal, molybdenum trioxides (α-MoO3) has been considered as a typical candidate for next-generation photodetectors (PDs) but with limited photodetection applications in the ultraviolet region. Here, a photo-induced thermoelectric (PTE) effect in α-MoO3 is proposed as a practical approach to realize the broadband photodetection of α-MoO3/Si heterojunction PDs. High-quality α-MoO3 films are grown on Si by using an e-beam evaporation method. By modulating the photo-induced thermoelectric potential along the c-axis on the transport properties, the α-MoO3/Si PDs can be operated as a self-powered device, showing broadband photoresponse beyond the bandgap limitation in the wavelength range of 405–1550 nm. The manipulation of the PTE effect in the heterojunction is investigated carefully, clarifying the corresponding physical mechanisms of the unique photoresponse behaviors. Furthermore, the fabricated device exhibits competitive photodetection performance with a high photoresponsivity of 63.3 mA/W, a high optical detectivity of 3.1 × 1011 cm Hz1/2W?1, fast response speeds with the rise/fall times of 0.47/0.76 ms, as well as high durability and environmental stability under 980-nm infrared illumination. These results not only provide a novel strategy to develop novel PDs with high performance, but also supply a deeply understanding of the PTE effect in α-MoO3/Si heterojunctions.  相似文献   

7.
We report α-MoO3 flowers as a highly effective organics adsorbent for the first time. With α-MoO3 microfibers (MFs), α-MoO3 flowers uniformly self-assemble on a carbon cloth, serving as a great organics scavenger. They not only provide a high specific surface area but also possess van der Waals force, both of which guarantee a high adsorption efficiency for multiple organics. Nearly 100% of Rhodamine B (RhB), methylene blue (MB), and crystal violet (CV) are rapidly adsorbed while flowing through the designed α-MoO3 flower-based filtration device. Even after five recycling times, its high adsorption efficiency toward RhB remains unaffected. The adsorption capacity of α-MoO3 flowers for RhB, MB, and CV reaches up to 4974, 6217, and 3886 mg/m2, respectively. Additionally, this novel adsorbent can adapt to a wide pH range, maintaining the excellent capacity of 4774 and 4473 mg/m2 toward RhB at pH of 2.0 and 12.0. The α-MoO3 flowers can also adsorb other organics, including MO, noroxin, and tetracycline hydrochloride. Moreover, the free-standing α-MoO3 flowers on a carbon cloth realize the adsorptive filtration for organics removal, which not only require no conditions and no energy consumption but also avoid secondary pollution to the water as compared to the powdery adsorbents.  相似文献   

8.
In view of the importance for CoxOy,-MoO3/-Al2O3 hydrodesulphurization (HDS) catalysts, the reactivity of cobalt oxide layers towards cobalt aluminate formation was investigated on both MoO3-covered and bare -Al2O3 substrates. Co3O4/MoO3/-Al2O3 and Co3O4/-Al2O3 systems were prepared by vapour-deposition of MoO3 (12 × 1015 Mo atoms/cm2) and Co (400 × 1015 Co atoms/cm2) layers onto a -Al2O3 substrate, followed by oxidation of the Co layer to Co3O4. After annealing at 800°C for 40 h, the interfacial reaction to cobalt aluminate was assessed using Rutherford backscattering spectrometry. The presence of molybdenum oxide appeared to enhance cobalt aluminate formation. The Mo atoms, which spread out over the entire cobalt-containing layer, presumably caused a high defect density, which explains the observed higher reaction rate. The amount of MoO3 was much too low to stabilize all cobalt atoms by cobalt molybdate formation.  相似文献   

9.
The MoO3/SiO2 catalysts containing different surface molybdenum species were prepared by a sol–gel method, and the effects of the preparation condition and MoO3 loading on the surface molybdenum species and property of MoO3/SiO2 were studied. The XRD, FT-IR, UV–vis and Raman spectroscopies were used to characterize the surface molybdenum species, and temperature-programmed desorption of NH3 adsorbed on a catalyst was used to detect the surface acidic properties. The results show that, there were the dispersed polymolybdate, α-MoO3, β-MoO3, monomeric molybdenum species and silicomolybdic acid on the MoO3/SiO2 catalyst, and their distributions and subsistence states were affected by the preparation condition and MoO3 loading. Different molybdenum species exhibit different catalytic activities for the epoxidation of propylene with cumene hydroperoxide. In the 15 wt% MoO3/SiO2 catalyst synthesized at pH 9.1 and dried appropriately, there are the small size β-MoO3 and monomeric molybdenum species that they are mainly effective catalyst components for the epoxidation of propylene. Using this catalyst, the ~100% conversion of cumene hydroperoxide and ~100% selectivity to propylene oxide can be obtained in the tert-butyl alcohol solvent at 2.6 MPa and 80 °C for 4 h.  相似文献   

10.
Oxidative dehydrogenation of propane was studied over MgMoO4-MoO3 catalysts with a wt% of MoO3 varying from 0 to 100. The samples were characterized by XRD, EPR, DTA, laser Raman, and BET. The catalytic behavior of the mechanical mixtures was quite different from that of pure phases. These differences were discussed in terms of possible synergy effects between the phases. Propane conversion and selectivity to propene were closely related to the change in redox properties of the catalysts due to the appearance of Mo5+ ions.  相似文献   

11.
β-MoO3, the molybdenum oxide phase with the highest catalytic activity, is a promising material in optical, chemical, and electronics applications as a replacement for α-MoO3. α-MoO3 1D nanostructures such as whiskers and fibers have been investigated and used in applications. However, difficulties in the synthesis of one-dimensional β-MoO3 have obstructed researchers in the study of its properties. In this research, β-MoO3 nanowhiskers were synthesized from core/shell molybdenum/molybdenum oxide wires by pulsed wire discharge in mixed oxygen and argon gases. X-ray diffraction analysis identified the main phase in the obtained samples as β-MoO3. Electron microscopy observations revealed whiskers with an average length and width of 216 nm and 23 nm, respectively. Transmission electron microscopy lattice imaging confirmed the successful synthesis of β-MoO3 nanowhiskers. Various models were considered to explain the formation of β-MoO3 nanowhiskers, including mechanical fragmentation of α-MoO3 layers as well as vapor-liquid-solid and vapor-solid mechanisms. The phase transformation from α to β-MoO3 under a nucleation process was explained based on the Mo-O phase diagram. To the best of our knowledge, this is the first report of β-MoO3 nanowhisker synthesis.  相似文献   

12.
《Ceramics International》2022,48(6):8069-8080
Homogeneous thin films of Molybdenum oxide (MoO3) were grown on quartz and glass substrates using the thermal evaporation method. XRD results showed that the MoO3 powder has a polycrystalline structure with an orthorhombic crystal system whereas the MoO3 thin films have amorphous nature. SEM images showed that the MoO3 thin films have a nearly uniform surfaces with worm-like shape grains. The film thickness influences on the linear and nonlinear optical characteristics of MoO3 thin films that were examined using spectrophotometric measurements and from which, the linear optical constants of the MoO3 thin films were estimated. The electronic transition type was determined as a direct allowed one. The values of the optical band gap were obtained to be in the range of 3.88–3.72 eV. The dispersion parameters, third-order nonlinear optical susceptibility, and the nonlinear refractive index of the MoO3 thin films were determined and interpreted in the light of the single oscillator model. The temperature dependence of the DC electrical conductivity and the corresponding conduction mechanism for the MoO3 films were investigated at temperatures ranging from 303 to 463 K.  相似文献   

13.
电致变色广泛应用于智能窗领域,但电致变色材料仍需外部电源驱动,将太阳能电池与电致变色材料结合起来的光电致变色器件可实现无需外部供电的智能变色调控。性能优异的变色阴极和光阳极是当下光电致变色器件的研究热点。通过水热法制备WO3-MoO3薄膜,研究其电致变色性能;通过水热法结合连续离子层沉积法制备TiO2/CdS复合薄膜,研究其光电转换性能。最后将WO3-MoO3薄膜和TiO2/CdS复合薄膜分别作为光电致变色器件的变色阴极、光阳极构建WO3/MoO3-TiO2/CdS光电致变色器件。WO3/MoO3-TiO2/CdS光电致变色器件具有较大的光学调制范围(630nm处为41.99%)、更高的着色效率(35.787%),将其作为智能窗应用在现代建筑、通行工具等领域具有重要应用价值。  相似文献   

14.
In this study, the structural, electrical, and optical properties of CuCr1?xNixO2 epitaxial films (x?=?0, 0.01, 0.03, 0.05), which exhibited p-type properties, were investigated. The (001)-oriented epitaxial films were deposited on c-plane α-Al2O3 substrates using pulsed laser deposition at a growth temperature of 700?°C and oxygen pressure of 10 mTorr. The optical energy band gap of the CuCr0.95Ni0.05O2 film was determined to be 3.22?eV. The hole carrier concentration of the CuCrO2 film increased from 5.1?×?1014 to 2.2?×?1017 cm?3 upon doping with 5?at% Ni. Based on Hall measurement and X-ray photoelectron spectroscopy results, it was suggested that the substituted Ni2+ dopants at Cr3+ sites formed an acceptor level without any charge compensation with Cu2+ and/or Cr4+.  相似文献   

15.
In this paper, uniformly transition metal oxide (MoO3) nanosheets were electrochemically deposited on flexible carbon cloth (CC), and then conductive polyaniline (PANI) was orderly wrapped around their surface by electrochemical polymerization. The morphology and structure of as-obtained self-supported PANI/MoO3/CC electrode were investigated by FTIR, X-ray diffraction, Raman, scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy measurements in detail. Among all PANI/MoO3/CC electrode, the self-supported PMC-3 (deposition time of 300 s) has high specific capacitance of 841.6 F g−1 at current density of 0.5 A g−1 in the three-electrode system, having specific capacitance of 595.7 F g−1 even at 10 A g−1. Novelty, the as-assembled symmetrical capacitor is flexible and convenient with power density of 199.93 W kg−1 at the energy density of 9.69 Wh kg−1 and the energy density of 3.88 Wh kg−1 at power density of 4000 W kg−1. Thus, the electrochemical properties of the self-supported PANI/MoO3/CC electrode were significantly improved, and the self-supported electrodes are more competitive than other materials in practical application of clean energy storage systems.  相似文献   

16.
《Ceramics International》2023,49(7):10714-10721
Orthorhombic Sc2(MoO4)3 nanofibers have been prepared by ethylene glycol assisted electrospinning method. The effects of annealing temperature, precursor concentration, spinning distance and solvent on the preparation of Sc2(MoO4)3 nanofibers were characterized by XRD, SEM, HRTEM, EDX and high-temperature XRD. XRD analysis shows as-prepared nanofibers are amorphous. Orthorhombic Sc2(MoO4)3 nanofibers can be fabricated after annealing at different temperatures in 500–800 °C for 2 h. The crystallinity of Sc2(MoO4)3 nanofibers improves and the nanofiber diameter decreases gradually as the annealing temperature increases. However, the nanofiber structure was destroyed at the annealing temperature above 700 °C. Higher precursor concentration results in a slight increase of diameter and decrease in destroying temperature of Sc2(MoO4)3 nanofibers. Spinning distance also affects the diameter of nanofibers, and the nanofiber diameter decreases as the distance increases. One-dimensional orthorhombic Sc2(MoO4)3 nanofibers exhibit anisotropic negative thermal expansion. In 25–700 °C, the coefficients of thermal expansion (CTE) of αa, αb and αc are ?5.81 × 10?6 °C?1, 4.80 × 10?6 °C?1 and -4.33 × 10?6 °C?1, and the αl of Sc2(MoO4)3 nanofibers is ?1.83 × 10?6 °C?1.  相似文献   

17.
A class of Yb3+/Er3+ co‐doped NaY(MoO4)2 upconversion (UC) phosphors have been successfully synthesized by a facile hydrothermal route with further calcination. The structural properties and the phase composition of the samples were characterized by X‐ray diffraction (XRD). The UC luminescence properties of Yb3+/Er3+ co‐doped NaY(MoO4)2 were investigated in detail. Concentration‐dependent studies revealed that the optimal composition was realized for a 2% Er3+ and 10% Yb3+‐doping concentration. Two‐photon excitation UC mechanism further illustrated that the green enhancement arised from a novel energy‐transfer (ET) pathway which entailed a strong ground‐state absorption of Yb3+ ions and the excited state absorption of Yb3+–MoO42? dimers, followed by an effective energy transfer to the high‐energy state of Er3+ ions. We have also studied the thermal properties of UC emissions between 303 and 523 K for the optical thermometry behavior under a 980 nm laser diode excitation for the first time. The higher sensitivity for temperature measurement could be obtained compared to the previous reported rare‐earth ions fluorescence based optical temperature sensors. These results indicated that the present sample was a promising candidate for optical temperature sensors with high sensitivity.  相似文献   

18.
A series of Na5Y(MoO4)4-yAy:Dy3+ (A = WO42?, VO43?; y = 0–0.05) phosphors were synthesized by the combustion method. Some of the MoO42? sites were occupied by WO42? and VO43? anions, which enhanced the luminescence property of Dy3+-doped Na5Y(MoO4)4. XRD results show that the crystal structures of the samples were consistent with the standard Na5Y(MoO4)4 phase. Under excitation at 352 nm, the Na5Y(MoO4)4-yAy:Dy3+ phosphors exhibited a characteristic blue emission at 485 nm and a yellow emission at 577 nm, which originated from the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. White light can be achieved by combining these blue and yellow emissions. After replacing MoO42? with WO42? and VO43? anions in Na5Y(MoO4)4:Dy3+, the luminescence intensity of Dy3+ was significantly improved due to the crystal field effect. The results indicate that Na5Y(MoO4)3.97(WO4)0.03:Dy3+ and Na5Y(MoO4)3.97(VO4)0.03:Dy3+ phosphors have good prospects for application in n-UV-excited w-LEDs.  相似文献   

19.
In this paper, x mol% Mn-doped SrTiO3 (STMx, x?=?0, 0.5, 1, 3 and 5) thin films were synthesized by a sol-gel method. The effect of Mn doping on the microstructure and electrical performance was investigated. STMx (x?≤?1) thin films shows a single cubic perovskite phase while impurity phase appears for STM3 and STM5 thin films confirmed by X-ray diffraction. X-ray photoelectron spectra reveals that STM1 thin film has the lowest concentration of oxygen vacancy. The dielectric constant and loss of STMx (x?≤?1) films display good frequency stability, while decrease with the frequency for STM3 and STM5 thin films. And all samples display excellent bias stability of dielectric constant; this is advantageous for applications in a high electric field. The ferroelectric test demonstrates that the electrical breakdown strength increases and leakage current decreases for Mn doped SrTiO3 films. A great recoverable energy storage density of 23.8?J/cm3 with an efficiency of 69.8% at 2.286?MV/cm is obtained in STM1 thin film. Furthermore, STM1 thin film shows good frequency stability of energy storage properties. It indicates that Mn doping is a simple and effective method to improve the energy storage properties of dielectric capacitors.  相似文献   

20.
《Ceramics International》2023,49(20):33135-33146
In the work, the temperature-programmed reaction (TPR) between hexagonal-shaped h-MoO3 and high-purity CO under different heating rates was investigated in order to prepare Mo2C. Various technologies such as TG-DTA-DTG, XRD, FESEM, FT-IR and Raman spectrum as well as the thermodynamic calculation were adopted to analyze the experimental data. The results showed that the physically adsorbed water on the sample surface, the residual ammonium and coordinated water in the internal structure of h-MoO3 were successively released as the temperature increased, and then α-MoO3 and Mo4O11 were formed when the temperature arrived at around 791 K. Upon further increasing the temperature, the reduction process occurred and MoO2 will be generated. Thereafter, the carburization reaction was taken place and the subsequent reaction pathways were significantly different at lower and higher heating rates: at lower heating rates (8 and 12 K/min), the carburization process of MoO2 to Mo2C followed MoO2→MoO2+Mo2C→Mo2C + Mo→Mo2C; while at higher heating rates (16 and 20 K/min), the reaction pathways followed MoO2→MoO2+Mo2C→MoO2+Mo2C + Mo + MoOxCy→Mo→Mo2C, single-phase metallic Mo can be generated. The work also discovered that the as-prepared Mo2C always kept the same platelet-shaped morphology as that of the newly-formed MoO2; while due to the removal of oxygen and the decrease of molar volume during the transformation process, the as-prepared Mo2C exhibited a rougher and more porous morphological structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号