首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multi-component lithium disilicate (LD) glass-ceramic with interlocking microstructure consisting of rod-like LD crystals and glassy matrix was ion-exchanged over wide temperature and time ranges in pure NaNO3 or mixed NaNO3 and KNO3 baths below the glass transition temperature. Treatment temperature, time and salt bath dependences of surface characteristics and mechanical properties for the ion-exchanged glass-ceramic were investigated. It was found that the glass-ceramic with limited glassy matrix could be remarkably strengthened and toughened in NaNO3 bath by adjusting the treatment temperature to a moderate level, at which Li+/Na+ exchange between the glassy matrix and the salt bath could form an ion-exchanged layer with larger depth and less stress relaxation. Furthermore, by using the mixed salt bath, the undesirable exchange of K+/Na+ in pure NaNO3 bath could be limited; further enhanced strengthening effect was achieved. The results might renew the interest on strengthening LD glass-ceramics by traditional ion-exchange process.  相似文献   

2.
《Ceramics International》2016,42(8):10071-10078
This study investigated the influence of different hydrofluoric acid (HF) concentrations and heat treatments applied to a lithium disilicate dental glass-ceramic (EMX) on surface morphology and micro-shear bond strength (μSBS) to resin cement. Five HF concentrations (1%, 2.5%, 5%, 7.5% and 10%) and four different heat treatments applied before etching were assessed: 1. etching at room temperature with no previous heat treatment (control group); 2. HF stored at 70 °C for 1 min applied to the ceramic surface at room temperature; 3. HF at room temperature applied after a hot air stream is applied perpendicularly to the ceramic surface for 1 min; 4. the combination of previously heated HF and heated EMX surface. The etching time was fixed for 20 s for all groups. Etched EMX specimens were analyzed on field-emission scanning electron microscope (FE-SEM) and the μSBS was carried out on a universal testing machine at a crosshead speed of 1 mm/min until fracture. For the control groups, FE-SEM images showed greater glassy matrix dissolution and higher μSBS for 7.5% and 10% HF concentrations. The previous heat treatments enhanced the glassy matrix dissolution more evidently for 1%, 2.5% and 5% and yielded increased μSBS values, which were not statistically different for 7.5% and 10% HF concentrations (control group). HF concentrations and previous heat treatments did show to have an influence on the etching/bonding characteristics to lithium disilicate dental glass-ceramic.  相似文献   

3.
In order to further improve the flexural strength of lithium disilicate glass-ceramic, surface strengthening by ion exchange using Rb, Cs nitrates has been studied for the first time. The influences of ion exchange using rubidium and cesium salts on the flexural strength and corrosion resistance have been investigated. It was found that the mechanical properties of the lithium disilicate glass-ceramic could be increased greatly by the ion exchange in rubidium nitrate (RbNO3) salt. After ion exchange for 4?h in RbNO3 salt, the flexural strength and microhardness increased from 169?MPa and 587?kgf?mm?2 (5.75?Gpa) of the original lithium disilicate glass-ceramic to 493?MPa and 654?kgf?mm?2 (6.4?Gpa), respectively. Moreover, the corrosion resistance of the lithium disilicate glass-ceramic was further improved by ion exchange in rubidium and cesium nitrate salts. Furthermore, the maximum thickness of the ion exchange layer using RbNO3 and CsNO3 was only 4.3?µm and 0.45?µm respectively. Such a thin exchange layer, which will only require very low Rb+, Cs+ ions exchange amount, indicates that the molten salts of RbNO3 and CsNO3 can be reused for many times. So it is suggested that surface strengthening of lithium disilicate glass-ceramic by ion exchange using Rb, Cs nitrates is cost-efficient and very suitable for the actual production and applications.  相似文献   

4.
《Ceramics International》2023,49(15):24885-24894
In this work, PMMA-based composite bone cements, embedding bioactive and ferrimagnetic glass-ceramic particles, have been prepared and characterized. Bioactivity, wettability, density, curing parameters, viscoelastic behaviour, bending strengths and creep have been investigated at 37 °C. The growth of a layer of HA on the samples surface after immersion in SBF has been confirmed. The presence of glass-ceramic particles improved the wetting behaviour of the composite cements. Shorter curing times and lower maximum temperatures for the three composite cements, in comparison to the plain one, have been detected. Almost unaffected mechanical properties of the composite bone cements have been found in comparison to those of the plain commercial cement both at room and at 37 °C. A little increase of the viscous flow has been evidenced in the composite samples at 37 °C. Radiographic imaging confirmed the intrinsic radiopacity of the composite cements.  相似文献   

5.
Continuous carbon fiber reinforced lithium aluminosilicate glass-ceramic matrix composites have been fabricated by sol-gel process and hot pressing technique. The results show that the Cf/β-eucryptite composites hot pressed at 1300 °C and Cf/β-spodumene composites hot pressed at 1400 °C form weak interface with brick pattern characteristics, leading to high mechanical performance. The maximum flexural strength and fracture toughness reach 571 ± 32 MPa and 9.8 ± 0.6 MPa m1/2 for Cf/β-eucryptite composites and 640 ± 72 MPa and 19.9 ± 1.8 MPa m1/2 for Cf/β-spodumene composites. On increasing the hot pressing temperature, the active chemical diffusion consumes brick pattern interface layer, which leads to the formation of strong bonding between carbon fiber and the matrix. As a result, the composites exhibit brittle fracture behavior and the mechanical properties decrease significantly.  相似文献   

6.
Bulk glass having a calcium-mica composition (Ca0.5Mg3AlSi3O10F2) is homogeneous glass. The crystallization mechanism of the mica is surface crystallization and transparency is lost completely when crystallization occurs on the surface. In this study, by decreasing SiO2 and increasing CaO and Al2O3 from the chemical composition of Ca0.5Mg3AlSi3O10F2, and moreover by replacing a small amount of K2O instead of CaO, the phase separation appears in the glasses. Because of this phase separation, the mica begins to be crystallized not only on the surface but also in the bulk at lower temperatures. Consequently, the novel transparent machinable mica glass-ceramic can be obtained by heating the glasses having the chemical composition of Ca0.6Mg3Al1.2Si2.8O10F2 and K0.01Ca0.595Mg3Al1.2Si2.8O10F2. As a larger amount of calcium-mica is separated, the bending strength decreases and the fracture toughness increases. Furthermore, by replacing K+ ion instead of Ca2+ ion in the interlayer of calcium-mica, the interlayer bonding strength becomes high, resulting in the increase of the bending strength.  相似文献   

7.
《Ceramics International》2015,41(8):9753-9762
Glass-based composite coating materials incorporating particles of alumina or YSZ were prepared by reaction sintering. It was revealed that phase evolution played a key role on thermal expansion behavior of the composite coating materials. Both precipitating of t-ZrO2 crystals and adding YSZ inclusions could raise CTEs of the glass-based matrix, while the formation of zircon produced the reverse effect. Especially, alumina additives retarded the crystallization of the base glass and reduced reaction rates between YSZ and the glass matrix remarkably. Thus, the Al2O3/YSZ/glass tri-composites could serve as an environmental barrier coating for intermetallics and superalloys because of the stabilized microstructure.  相似文献   

8.
Li2O–Al2O3–SiO2 glass with CaO, MgO and TiO2 additive were investigated. With more CaO + MgO addition, the crystallization temperature (Tp) and the value of Avrami constant (n) decreased, the activation energy (E) increased. The mechanism of crystallization of the glass ceramics changed from bulk crystallization to surface crystallization. With more TiO2 addition, the crystallization temperature decreased, E and n had a little change. The crystallization of the glass ceramics changed from surface crystallization to two-dimensional crystallization. Plate-like, high mechanical properties spodumene-diopside glass ceramics were obtained. The mechanical properties related with crystallization and morphology of glass ceramics.  相似文献   

9.
《Ceramics International》2022,48(15):21355-21361
In this study, a transparent and environmentally friendly Li2O–Al2O3–SiO2 (LAS) glass-ceramic was prepared by melt-quenching and two-step heat treatment. The influence of the substitution amount of ZrO2 by SnO2 on the crystallization, microstructure, transparency, and mechanical properties of LAS glass and glass-ceramics was investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Ultraviolet–visible Spectrophotometer, three-point bending strength test, and microhardness test. The results indicate that the main crystalline phase of LAS glass ceramics was a β-quartz solid solution when heat treated at 780 °C for 2 h and 870 °C for 1.5 h. When the substitution amount of ZrO2–SnO2 increased from 0.4 mol% to 2.5 mol%, the grain size and thermal expansion coefficient of LAS glass-ceramics first decreased and then increased, and the crystallinity first increased and then decreased. When the substitution amount of ZrO2–SnO2 was 0.8 mol%, the transparency of the LAS glass-ceramics was maximum, the bending strength was 96 MPa, and the Vickers hardness was 10.9 GPa.  相似文献   

10.
《Ceramics International》2016,42(7):8179-8189
Effects of ZnO and NiO on structural, morphological, magnetic properties and microwave absorption behavior of glass-ceramic tiles derived from iron ore tailings (IOTs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), magnetization measurements, fourier transform infrared spectroscopy (FTIR) and complex permittivity and permeability measurements. Gradual replacement of NiO by ZnO was found to lower crystallinity of the glass-ceramic and reduce average grain size of the only crystalline phase indexed as spinel Ni–Zn ferrite. Ni2+ ion oscillations at different coordination environments inside glass network led to several notable dielectric losses in 3.8–15 GHz. Ferromagnetic resonance frequency is positively correlated with the amount of Ni2+. These Ni-related effects enhanced the maximum microwave attenuation of the glass-ceramic to reach −34.35 dB with its frequency being tunable in 6.70–11.20 GHz.  相似文献   

11.
Monoclinic celsian derived from an innovative route, i.e. cation exchanged zeolites heat-treated at low temperature, was added at different contents (10, 20, 30 wt%) to a glass matrix, in order to improve its mechanical and electrical performances. The effect of the celsian reinforcement was evaluated by testing several properties of the composite materials, such as the elastic modulus, abrasion resistance, flexural strength and electrical insulation. The results so far obtained suggest that the addition of the monoclinic celsian to the glass matrix may produce low-cost particulate composites with interesting technological properties.  相似文献   

12.
The effect of nitrogen and fluorine substitution on the crystallisation of a new generation of oxyfluoronitride glasses in the Ca-Si-Al-O-N-F system has been studied. Glasses were nucleated for 5 h at the nucleation temperature of Tg + 50 °C and crystallised for 10 h at the maximum crystallisation temperature (900-1050 °C depending on the glass composition) determined from differential thermal analysis. For the oxide glass, crystallisation results in formation of wollastonite (CaSiO3), gehlenite (Ca2Al2SiO7) and anorthite (CaAl2Si2O8) along with a small amount of residual glass. For crystallisation of oxyfluoride glasses (0 equiv.% N), when fluorine content increases, cuspidine (Ca4Si2O7F2) is the major crystalline phase at the expense of gehlenite while in oxyfluoronitride glasses containing 20 equiv.% N, gehlenite is always the dominant crystalline phase at different fluorine contents. At constant fluorine content (5 equiv.%), an increase in nitrogen content favours the formation of gehlenite rather than anorthite or wollastonite suggesting that this phase may be able to accommodate N into its crystal structure. While a small amount of nitrogen substitution for oxygen can be assumed in the gehlenite structure, the residual glass in the glass-ceramic is expected to be very N-rich. In terms of properties, hardness is shown to be more sensitive to changes in microstructure, phase morphology and crystal size compared with elastic modulus which is related to the amounts of constituent phases present.  相似文献   

13.
Gel-cast bodies based on cordierite glass-ceramics were prepared by sintering route. Effect of monomer and cross-linker values as well as sintering temperatures on bending strength of dried and sintered bodies were investigated. While the bending strength of dried gel-cast bodies was increased with the percentage of the polymers, bending strength of sintered bodies was changed conversely with them. Therefore, it was concluded that the least amount of monomer acrylamid (3 wt.%) and moderate amount of cross-linker (∼0.75 wt.%) guarantees the required dried and fired bending strengths. The optimum sintering temperature was about 1270 °C and specimens that was fired at this temperature showed a maximum bending strength of about 200 MPa.  相似文献   

14.
Ceramics and ceramic reinforced metal matrix composites (MMCs) are widely used in severe working conditions and have been applied in biomedical, aerospace, electronic, and other high-end engineering industries owing to their superior properties of high wear resistance, outstanding chemical inertness, and excellent properties at elevated temperatures. These superior properties, on the other hand, make it difficult to process these materials with conventional manufacturing methods, posing problems of high cost and energy consumptions. In response to this problem, direct additive manufacturing (AM), which is equipped with a high-power-density laser beam as heat source, has been developed and extensively employed for processing ceramics and ceramic reinforced MMCs. Compared with other direct AM processes, laser deposition-additive manufacturing (LD-AM) process excels in several aspects, such as lower labor intensity, higher fabrication efficiency, and capabilities of parts remanufacturing and functionally gradient composite materials fabrication. Besides these benefits, problems of poor bonding, cracking, lowered toughness, etc. still exist in LD-AM fabricated parts. This paper reviews developments on LD-AM of ceramics and ceramic reinforced MMCs in both bulk parts fabrication and cladding. Main issues to be solved, corresponding solutions, and the trend of development are summarized and discussed.  相似文献   

15.
Ultra-high temperature ceramic matrix composites (C/SiC–ZrB2) are prepared by slurry and precursor infiltrations and pyrolysis method. C/SiC–ZrB2 composites with ZrB2 volume content from 10% to 24.6%, have balanced performance of fracture toughness (17.7–8.1 MPa m1/2), flexural strength at room temperature (367–163 MPa) and at high temperature (strength retention 74% at 1800 °C and over 32% at 2000 °C), better oxidation and ablation resistance under oxyacetylene torch environment (recession rate 0.01 mm/s).  相似文献   

16.
Simultaneous synthesis and densification of α-Zr(N)/ZrB2 composites from a 85 mol% Zr/15 mol% B mixed-powder compacts have been achieved by self-propagating high-temperature under a nitrogen pressure of 10 MPa. Composites consist of fine and short rodlike ZrB2 grains (0.1 μm?–0.5 μml) dispersed into α-Zr(N) matrix (3 μm). Dense composite materials (96.5% of theoretical) exhibit excellent mechanical properties, in which their bending strength and Hv are 560 MPa and 6.5 GPa, respectively. This bending strength is much superior to those (205 and 480 MPa) of dense equi-axial α-Zr(N) (10 μm) and dense ZrB2 (6 μm). Fine and rodlike ZrB2 grains greatly enhanced their mechanical properties.  相似文献   

17.
《Ceramics International》2016,42(16):18053-18057
LZAS glass-ceramic composites toughened by 5, 10, 15 and 20 vol% 3-mol%-Y2O3-tetragonal-ZrO2-polycrystal (3Y-TZP) were prepared via pressureless sintering. Sinterability of composites was investigated in the temperature range of 520–720 °C using soaking time of 30 min. The sintered specimens were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. The results revealed that during sintering 3Y-TZP particles agglomerated between the glass powders and were not dissolved by glass-matrix. Mechanical properties of the sintered samples such as bending strength, Vickers micro-hardness and fracture toughness were also investigated. Measurements showed that the relative density of the samples decreased with increasing 3Y-TZP content. The composite containing 15 vol% 3Y-TZP has a best mechanical properties and it would be the optimum composition. It can be confirmed that crack deflection and transformation toughening are the dominant mechanisms for improving mechanical properties of the composites.  相似文献   

18.
《Ceramics International》2017,43(4):3804-3810
Glasses in the system 51.7 B2O3/9.3 K2O/1 P2O5/10.4 Fe2O3/(27.6–x) MgO/ x ZnO (with x=0, 5, 10, 13.8 and 20 mol%) were prepared by the conventional melt quenching method. The as prepared glass samples were thermally treated at 560 °C for 3 or 6 h. The effect of substituting MgO by ZnO in the glass network on the crystallized phase was studied. The resulting magnetic glass ceramics were characterized using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM) including energy dispersive X-ray analysis (EDX). The substitution of Mg by Zn resulted in a larger lattice parameter of the precipitated crystals, while the crystallite size does not change significantly. TEM micrographs, recorded from extracted particles, showed the formation of small aggregates with about 30 nm in diameter. These agglomerates contain crystals with sizes in the range from 7 to 9 nm. EDX measurements proved the incorporation of Zn2+ ions into the crystal phase. Room temperature magnetic measurements of the samples with up to 10 mol% ZnO showed hysteresis loops which are characteristic for super paramagnetic (SPM) behavior. A magnetic contribution was not detected for samples with higher ZnO concentrations. The maximum magnetization varied with the composition of the glass ceramics to a great extent.  相似文献   

19.
20.
《Ceramics International》2019,45(10):12957-12964
SiCf/SiC composites using KD-I and KD-II SiC fibers braided preforms as the reinforcements were fabricated by applying the polymer impregnation and pyrolysis (PIP) technique with a microwave heating assistance. The microwave heating temperature was 1100 °C, 1200 °C, 1300 °C, and 1400 °C, respectively. Microstructures, flexure properties, and fracture behaviors of the composites were investigated. The KDIISiCf/SiC composites exhibited higher flexure properties and improved non-brittle fracture characteristics than those of the KD-ISiCf/SiC composites. The differences in the flexural properties, fracture behaviors and microstructures between the KD-I and KDIISiCf/SiC composites were discussed based on the tensile properties of the SiC filaments and the interfacial bonding statues in the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号