首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

2.
《Ceramics International》2019,45(14):17224-17235
The low residual stress and excellent thermal insulation performance are the two primary performance indicators to evaluate the Double-Ceramic-Layers Thermal Barrier Coating System (DCL-TBCs). Based on the theoretical and numerical models, the sensitivity analysis was utilized to quantify the effect of material properties of the top coating (TC) and geometric parameters on the objective functions discussed above in the present work, and the results show that the thickness ratio and the elastic modulus of TC dominate the influence on the residual stresses in YSZ and TC respectively, and the thermal conductivity of TC has a decisive effect on the overall thermal insulation performance in DCL TC/YSZ systems. Besides, a fast multi-objective optimization method combining back propagation neural network (BPNN) and non-dominated sorting genetic algorithm with constraints (Constrained NSGA-II) has been developed to find the optimal coating structure which can make the residual stresses in ceramic layers and the equivalent thermal conductivity of entire TBCs minimized for various DCL-TBC systems. And the feasible design parameters including the total thickness of two ceramic layers (TH) and the thickness ratio (TR) of YSZ to TH were obtained considering the limitation of YSZ operating temperature and the sintering temperature of the TC. Furthermore, the reference structural parameters were chosen from the optimal solutions by using a typical decision-making TOPSIS method. Finally, the results of sensitivity analysis can also be used to account for the difference in Pareto frontiers of the LZ/YSZ, LaPO4/YSZ and LZ7C3/YSZ DCL-TBC systems.  相似文献   

3.
Efficiency of a gas turbine can be increased by increasing the operating temperature. Yttria‐stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used in gas turbine applications. However, above 1200°C, YSZ undergoes significant sintering and CMAS (calcium magnesium alumino silicate) infiltration. New ceramic materials of rare earth zirconate composition such as gadolinium zirconate (GZ) are promising candidates for thermal barrier coating applications (TBC) above 1200°C. Suspension plasma spray of single‐layer YSZ, double‐layer GZ/YSZ, and a triple‐layer TBC comprising denser GZ on top of GZ/YSZ TBC was attempted. The overall coating thickness in all three TBCs was kept the same. Isothermal oxidation performance of the three TBCs along with bare substrate and bond‐coated substrate was investigated for time intervals of 10 h, 50 h, and 100 h at 1150°C in air environment. Weight gain/loss analysis was carried out by sensitive weighing balance. Microstructural analysis was carried out using scanning electron microscopy (SEM). As‐sprayed single‐layer YSZ and double‐layer GZ/YSZ showed columnar microstructure, whereas the denser layer in the triple‐layer TBC was not columnar. Phase analysis of the top surface of as‐sprayed TBCs was carried out using XRD. Porosity measurements were made by water intrusion method. In the weight gain analysis and SEM analysis, multilayered TBCs showed lower weight gain and lower TGO thickness compared to single‐layer YSZ.  相似文献   

4.
Service lifetime and thermal insulation performance are both crucial for the application of thermal barrier coatings (TBCs). In this study, layered structure design under equivalent thermal insulation conception is introduced to lower the cracking driving force in TBCs, and with the goal of prolonging TBCs lifetime. Three groups of layered LZO/YSZ TBCs were designed with same thermal insulation of 500?μm YSZ, the LZO layers were deliberately designed with different initial elastic modulus. Virtual crack closure technique (VCCT) calculation result showed that the energy release rates at the crack tips are 28.2, 22, and 18.8?N/m corresponding to the initial elastic modulus of 70, 60, and 50?GPa. After gradient thermal cyclic tests with surface temperature of 1300?°C, TBCs with lowest initial elastic modulus showed the longest lifetime, and more than double of pure YSZ TBCs. This study provides a new option for the improvement of TBCs lifetime.  相似文献   

5.
《Ceramics International》2019,45(12):15281-15289
Pure metastable tetragonal (t’) phase 4YSZ top coats with thickness of 100 and 200 μm were deposited on NiCoCrAlY-coated second generation single crystal superalloy by air plasma spray (APS). The two thermal barrier coatings were evaluated under gradient thermal cycling test using gas mixture of propane and oxygen. After flame shock test, the values of Young's modulus, hardness and degree of densification all exhibited a gradient distribution across YSZ thickness. In contrast to intensive sintering at surface of 200 μm 4YSZ coating, the TBC sample with 4YSZ layer of 100 μm underwent poor oxidation at interface of YSZ and bond coat, forming a duplex oxide scale: (Ni,Co)(Cr,Al)2O4 spinel over Al2O3, which promoted the delamination at the top-coat/bond-coat interface. The resistance against gradient thermal cycling, the phase stability of 4YSZ and the failure mechanism of the TBCs, were discussed correlating to the effects of YSZ thickness.  相似文献   

6.
In this work, quenching stress generated during the deposition process and the Coefficient of Thermal Expansion (CTE) thermal mismatch stress produced during the cooling down process of Double-Ceramic-Layers Thermal Barrier Coating System (DCL-TBCs) have been intensively examined. The thickness ratio of Lanthanum Zirconate (LZ, La2Zr2O7) coating to stabilized Zirconia (YSZ, ZrO2-8%Y2O3) coating, have been theoretically analyzed. In addition, DCL-TBCs specimens with different thickness ratio of LZ to YSZ coatings were fabricated, to study the effect of this thickness ratio by specimen curvature and crack density analysis. Meanwhile, Finite Element Method (FEM) has been carried out to validate results obtained theoretically. The results reveal that by comparison to CTE thermal mismatch stress, quenching stress has remarkable effect on total thermal stress. By increasing thickness ratio of YSZ to LZ coatings, average thermal stress and crack densities in YSZ and LZ coatings increased. Nevertheless, the curvature ratio of DCL-TBCs specimen decreases.  相似文献   

7.
《Ceramics International》2022,48(17):24402-24410
Zr6Ta2O17 has higher fracture toughness, better phase stability, thermal insulation performance and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (8 YSZ, 7–8 wt%) at temperatures above 1200 °C. However, the thermal expansion coefficients between Zr6Ta2O17 coating and bond coating do not match well. A double-ceramic-layer design is applied to alleviate the thermal stress mismatch. The Zr6Ta2O17/8 YSZ double-ceramic-layer thermal barrier coatings (TBCs) are prepared by atmospheric plasma spraying (APS). During the thermal shock test, Zr6Ta2O17/8 YSZ double-ceramic-layer TBCs exhibit a better thermal shock resistance than 8 YSZ and Zr6Ta2O17 single-layer TBCs. The thermal shock performance and failure mechanism of TBCs in the thermal shock test are investigated and discussed in detail.  相似文献   

8.
Double ceramic layer (DCL) TBCs consisting of a top 20 wt.% Al2O3-7YSZ layer and a bottom 7YSZ layer were desirably designed to achieve preferable performance while the thermal, mechanical and thermal cyclic properties were comprehensively investigated. Compared to the conventional 7YSZ TBCs, the thermal insulation properties of the DCL coating were significantly improved due to the increased oxygen vacancy concentration induced by Al2O3 addition while the thickness of the thermally grown oxides was diminished by the decreased oxygen diffusion rate. Furthermore, the improved fracture toughness of the DCL coating also prolonged the thermal cyclic life.  相似文献   

9.
Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the service lifetime of TBCs precisely and efficiently. In this study, plasma‐sprayed YSZ TBCs were subjected to gradient thermal cyclic tests under different surface temperatures, with the aim of elucidating the correlation between the coating surface temperature and the thermal cyclic lifetime. Results showed that the thermal cyclic lifetime of TBCs decreased with the increasing of surface temperatures. However, the failure modes of these TBCs subjected to thermal cyclic tests were irrespective of different surface/BC temperatures, that is, sintering‐induced delamination of the top coat. The thickness of thermally grown oxide (TGO) was significantly less than the critical TGO thickness to result in the failure of TBCs through the delamination of top coat. There was no phase transformation of the top coat after failure. In contrast, in the case concerning the top coat surface of the failure specimens, the elastic modulus and microhardness increased to a comparable level due to sintering despite of the various thermal cyclic conditions. Consequently, it is conclusive that the failure of TBCs subjected to gradient thermal cyclic test was primarily induced by sintering during high‐temperature exposure. A delamination model with multilayer splats was developed to assist in understanding the failure mechanism of TBCs through sintering‐induced delamination of the top coat. Based on the above‐described results, this study should aid in facilitating the lifetime evaluation of the TBCs, which are on active service at relatively lower temperatures, by an accelerated thermal cyclic test at higher temperatures in laboratory conditions.  相似文献   

10.
采用有限元分析软件ANSYS对等离子喷涂Sm2Zr2O7/YSZ双陶瓷层热障涂层界面残余热应力分布进行了数值仿真。结果表明:基体厚度不同时,涂层界面Sm2Zr2O7/YSZ及界面YSZ/NiCoCrAlY对应应力及应力梯度基本不变,表明应力及应力梯度与基体厚度无关;但基体材质热膨胀系数对涂层系统界面的径向、轴向及剪切应力梯度有决定性的影响,且各应力梯度随金属基体的热膨胀系数差异增加而增大,表明基体材质是影响涂层界面径向残余热应力及应力梯度的根本原因。采用多层陶瓷结构并合理选择各层材质的热膨胀系数将更加有利于降低涂层应力梯度,进而改善涂层性能,延长涂层寿命。  相似文献   

11.
《Ceramics International》2016,42(11):12922-12927
The single-ceramic-layer (SCL) Sm2Zr2O7 (SZO) and double-ceramic-layer (DCL) Sm2Zr2O7 (SZO)/8YSZ thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying on nickel-based superalloy substrates with NiCoCrAlY as the bond coat. The mechanical properties of the coatings were evaluated using bonding strength and thermal cycling lifetime tests. The microstructures and phase compositions of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results show that both coatings demonstrate a well compact state. The DCL SZO/8YSZ TBCs exhibits an average bonding strength approximately 1.5 times higher when compared to the SCL SZO TBCs. The thermal cycling lifetime of DCL SZO/8YSZ TBCs is 660 cycles, which is much longer than that of SCL 8YSZ TBCs (150 cycles). After 660 thermal cycling, only a little spot spallation appears on the surface of the DCL SZO/8YSZ coating. The excellent mechanical properties of the DCL LZ/8YSZ TBCs can be attributed to the underlying 8YSZ coating with the combinational structures, which contributes to improve the toughness and relieve the thermal mismatch between the ceramic layer and the metallic bond coat at high temperature.  相似文献   

12.
Thermal cycling failure of three multilayer TBCs based on LaMgAl11O19 (LaMA)/YSZ was comparatively investigated by using the burner-rig testing method in this work. Results indicate that through optimizing the weight ratio and thickness of the intermediate LaMA/YSZ composite layers, a five-layer TBC with much improved thermal cycling life of 11,749 cycles at 1372 °C surface and 1042 °C bond coat testing temperature has been realized. While, thermal cycling lifetimes of the tri- and six-layer TBCs were 7439 and 7804 cycles at surface/bond coat testing temperatures of 1378 °C/1065 °C and 1367 °C/1056 °C, respectively. Factors related to the 60 wt.% LaMA + 40 wt.% YSZ (60LaMA + 40YSZ) intermediate composite layer with the highest thermal expansion coefficient than other composite layers generating higher internal stress level to the tri- and six-layer TBCs, different bond coat temperature and TGO growth, as well as long-term stability of the LaMA coating during thermal cycling tests, were characterized and compared to understand the different thermal cycling lifetime and failure modes among such three multilayer TBCs.  相似文献   

13.
During high temperature service, a series of microstructure and phase evolutions occur in thermal barrier coatings (TBCs), which result in degradation of thermal insulation and durability. In this study, the sintering behavior of an air plasma sprayed 8 wt% YSZ coating deposited using electro-sprayed nanostructured particles (ESP) as feedstock powder was investigated and compared with conventional YSZ coating deposited using hollow spherical powders (HOSP). Due to the distinct asymmetric porous structure formed by nanosized YSZ particles, the ESP powder was partially melted in the plasma jet during the deposition, which resulted in the formation of a nanostructured coating that consisted of porous nanozones and dense zones. The ESP coating not only shows a significantly lower initial thermal conductivity of 0.70 W/mK, but also exhibits a stronger sintering resistance in terms of phase stability and thermal insulation compared to the conventional coating. When subjected to prolonged sintering at 1400°C for 128 hours, the thermal conductivity of the ESP coating would gradually increase to about half that of the HOSP coating at 1.29 W/mK. These differences are ascribed to the interaction among different sintering behavior between nanozones and dense zones.  相似文献   

14.
《Ceramics International》2023,49(12):20034-20040
In order to reveal the effect of Sc2O3 and Y2O3 co-doping system on the thermal shock resistance of ZrO2 thermal barrier coatings, Y2O3 stabilized ZrO2 thermal barrier coatings (YSZ TBCs) and Sc2O3–Y2O3 co-stabilized ZrO2 thermal barrier coatings (ScYSZ TBCs) were prepared by atmospheric plasma spraying technology. The surface and cross-section micromorphologies of YSZ ceramic coating and ScYSZ ceramic coatings were compared, and their phase composition before and after heat treatment at 1200 °C was analyzed. Whereupon, the thermal shock experiment of the two TBCs at 1100 °C was carried out. The results show that the micromorphologies of YSZ ceramic coating and ScYSZ ceramic coating were not much different, but the porosity of the latter was slightly higher. Before heat treatment, the phase composition of both YSZ ceramic coating and ScYSZ ceramic coating was a single T′ phase. After heat treatment, the phase composition of YSZ ceramic coating was a mixture of M phase, T phase, and C phase, while that of ScYSZ ceramic coating was still a single T′ phase, indicating ScYSZ ceramic coating had better T′ phase stability, which could be attributed to the co-doping system of Sc2O3 and Y2O3 facilitated the formation of defect clusters. In the thermal shock experiment, the thermal shock life of YSZ TBCs was 310 times, while that of ScYSZ TBCs was 370 times, indicating the latter had better thermal shock resistance. The difference in thermal shock resistance could be attributed to the different sintering resistance of ceramic coatings and the different growth rates of thermally grown oxide in the two TBCs. Furthermore, the thermal shock failure modes of YSZ TBCs and ScYSZ TBCs were different, the former was delamination, while the latter was delamination and shallow spallation.  相似文献   

15.
Gadolinium zirconate (Gd2Zr2O7, GZO) as an advanced thermal barrier coating (TBC) material, has lower thermal conductivity, better phase stability, sintering resistance, and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (YSZ, 6-8 wt%) at temperatures above 1200°C. However, the drawbacks of GZO, such as the low fracture toughness and the formation of deleterious interphases with thermally grown alumina have to be considered for the application as TBC. Using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS), double-layered YSZ/GZO TBCs, and triple-layered YSZ/GZO TBCs were manufactured. In thermal cycling tests, both multilayered TBCs showed a significant longer lifetime than conventional single-layered APS YSZ TBCs. The failure mechanism of TBCs in thermal cycling test was investigated. In addition, the CMAS attack resistance of both TBCs was also investigated in a modified burner rig facility. The triple-layered TBCs had an extremely long lifetime under CMAS attack. The failure mechanism of TBCs under CMAS attack and the CMAS infiltration mechanism were investigated and discussed.  相似文献   

16.
ZrO2 co-stabilized by CeO2 and TiO2 with stable, nontransformable tetragonal phase has attracted much attention as a potential material for thermal barrier coatings (TBCs) applied at temperatures >?1200?°C. In this study, ZrO2 co-stabilized by 15?mol% CeO2 and 5?mol% TiO2 (CTZ) and CTZ/YSZ (zirconia stabilized by 7.4?wt% Y2O3) double-ceramic-layer TBCs were respectively deposited by atmospheric plasma spraying. The microstructures, phase stability and thermo-physical properties of the CTZ coating were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric-differential scanning calorimeter (TG-DSC), laser pulses and dilatometry. Results showed that the CTZ coating with single tetragonal phase was more stable than the YSZ coating during isothermal heat-treatment at 1300?°C. The CTZ coating had a lower thermal conductivity than that of YSZ coating, decreasing from 0.89?W?m?1 K?1 to 0.76?W?m?1 K?1 with increasing temperature from room temperature to 1000?°C. The thermal expansion coefficients were in the range of 8.98?×?10?6 K?1 – 9.88 ×10?6 K?1. Samples were also thermally cycled at 1000?°C and 1100?°C. Failure of the TBCs was mainly a result of the thermal expansion mismatch between CTZ coating and superallloy substrate, the severe coating sintering and the reduction-oxidation of cerium oxide. The thermal durability of the TBCs at 1000?°C can be effectively enhanced by using a YSZ buffer layer, while the thermal cycling life of CTZ/YSZ double-ceramic-layer TBCs at 1100?°C was still unsatisfying. The thermal shock resistance of the CTZ coating should be improved; otherwise the promising properties of CTZ could not be transferred to a well-functioning coating.  相似文献   

17.
La2Ce2O7 (LC) is receiving increasing attention due to its lower thermal conductivity, better phase stability and higher sintering resistance than yttria partially stabilized zirconia (YSZ). However, the low fracture toughness and the sudden drop of CTE at approximately 350?°C greatly limit its application. In this study, the LC/50?vol.% YSZ composite TBC was deposited by supersonic atmospheric plasma spraying (SAPS). Compared to YSZ or double layered LC/YSZ coating, the thermal cycling life of LC/50?vol.% YSZ coating with CMAS attack increased by 93% or 91%. The latter possessed higher fracture toughness (1.48?±?0.26?MPa?m1/2) than LC (0.72?±?0.15?MPa?m1/2) and better CMAS corrosion resistance than YSZ owing to the formation of Ca2(LaxCe1-x)8(SiO4)6O6–4x with <001> orientation perpendicular to the coating surface. The sudden CTE decrease of LC was fully suppressed in LC/50?vol.% YSZ coating due to the change of temperature dependent residual stresses induced by YSZ.  相似文献   

18.
《Ceramics International》2022,48(5):6199-6207
TiAl alloys are promising structural materials in the field of gas turbine engines, due to their low density and high specific strength. Applying thermal barrier coatings (TBCs) is an effective method to increase the service temperature and lifetime of TiAl alloys. In this work, a YSZ/TiAlCrY bilayer system was fabricated by air and vacuum plasma spray techniques on TiAl alloys. The thermal shock behavior was focused on and compared with the traditional YSZ/NiCrAlY system by means of a water-quenching test at 1100 °C. The results show that the YSZ/TiAlCrY system exhibited excellent thermal cycling lifetime with over 210 cycles, which was almost 3 times that of the traditional YSZ/NiCrAlY system on Ni-based superalloys. The failure mechanism was analyzed based on microstructural observations and residual stress calculations. It is found that without the formation of new brittle phases at the interface and suitable CTE were the key factors for the excellent thermal shock resistance of the YSZ/TiAlCrY system on TiAl alloy substrates.  相似文献   

19.
In this study, a newly-tailored plasma-sprayed (PS) yttria-stabilized zirconia (YSZ) ceramic coating towards enhanced strain tolerance and sintering resistance was developed to improve the durability of TBCs. The thermal shock life was found to be markedly prolonged by more than four times. Failure mechanisms and sintering behavior of the newly-structured and conventional TBCs were systematically investigated through microstructural and mechanical analyses. Conventional TBCs suffered a premature spallation due to rapid sintering-induced stiffening of the ceramic top coat. In contrast, the new coating exhibits an enhanced sintering resistance whereby preserving a good strain tolerance over time. Specifically, its elastic modulus after thermal exposure remains comparable to the as-sprayed states. The effect of ceramic top coat stiffness on cracking behavior of TBCs was clarified by a corresponding cohesive zone finite element modeling. This study provides a new option for improving TBCs durability and the results could benefit the increased integrity of TBCs.  相似文献   

20.
《Ceramics International》2017,43(12):8556-8563
Adhesion strength and thermal insulation of nanostructured Yttria Stabilized Zirconia (YSZ) thermal barrier coatings (TBC) were investigated and compared with those of conventional YSZ TBCs. A Nickel based superalloy (IN-738LC) was used as the substrate with NiCrAlY bond coat, and nanostructured and conventional YSZ top coats were applied by using air plasma spray (APS). The adhesion strength of coatings was evaluated according to ASTM C633-01, and their thermal insulation capability was evaluated using a specially designed test setup at an electrical furnace. The results revealed the nanostructured YSZ coating to have a bimodal microstructure consisting of nanosized particles and microcolumnar grains. The bimodal microstructure of nanostructured coatings prevented crack propagation by splat boundaries and unmelted particles, thereby improving the bonding strength. Also, due to the presence of nano-zones in the microstructure of nano TBCs, coatings exhibited superior thermal insulation capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号