首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work attempts to understand the effect of W addition on microstructure, thermal stability, and hardness of ReB2 type hexagonal osmium diboride (h-OsB2). h-OsB2 samples with W atomic concentration of (Os+W) from 0% to 30% were synthesized by mechanochemical method combines with pressure-less sintering. The XRD patterns of the as-synthesized powders indicate the formation of Os1-xWxB2 (x?=?0, 0.1, 0.2 and 0.3) solid solution, which has a ReB2-type hexagonal structure. After being high temperature sintered, part of the h-OsB2 phase of the pure OsB2 transformed to orthorhombic (o) phase, while the h-OsB2 phase was maintained with the addition of W, which suggests that the thermal stability of the sample was remarkably improved. A macroscopically homogeneous structure with some pores can be found from all groups of the as-sintered Os1-xWxB2 (x?=?0, 0.1, 0.2, 0.3) samples, with some B-rich areas distributed in the W doped samples. The lattice parameters of the Os1-xWxB2 (x?=?0, 0.1, 0.2 and 0.3) solid solutions linearly decreased with the increase of the W concentration. The micro-hardness of the OsB2 sintered samples is 25?±?2?GPa under an applied load of 0.49?N, which increased to 34?±?2?GPa, 38?±?2 and 37?±?2?GPa, respectively when the W concentration increased from 10, 20 and 30?at%. The increased hardness of the h-OsB2 can be mainly attributed to the improvement of thermal stability with the addition of W.  相似文献   

2.
High-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics, with different carbon contents (x=0.55?1), were prepared by spark plasma sintering using powders synthesized via a carbothermal reduction approach. Single-phase, high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics could be obtained when using a carbon content of x=0.70?0.85. Combined ZrO2 and Mo-rich carbide phases, or residual graphite, existed in the ceramics due to either a carbon deficiency or excess at x=0.55 and 1, respectively. With the carbon content increased from x=0.70 to x=0.85, the grain size decreased from 4.36 ± 1.55 μm to 2.00 ± 0.91 μm, while the hardness and toughness increased from 23.72 ± 0.26 GPa and 1.69 ± 0.21 MPa·m1/2 to 25.45 ± 0.59 GPa and 2.37 ± 0.17 MPa·m1/2, respectively. This study showed that the microstructure and mechanical properties of high-entropy carbide ceramics could be adjusted by the carbon content. High carbon content is conducive to improving hardness and toughness, as well as reducing grain size.  相似文献   

3.
《Ceramics International》2021,47(18):25593-25601
The effect of Si doping on the microstructure and hardness of an AlTiSiN coating deposited by the low pressure chemical vapor deposition (LPCVD) method was studied in detail using grazing incidence X-ray diffraction (GIXRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and a nanoindenter instrument. The results show that Al0.82Ti0.18N coating exhibits a typical columnar crystal structure, while Al0.88Ti0.09Si0.03N and Al0.82Ti0.08Si0.10N coatings show a fine equiaxed crystal structure. The number of internal substructures (dislocation, stacking fault, etc.) decreased, while the volume fraction of the amorphous structure increased with the increase of Si content. The results of GIXRD and HRTEM show that all AlTiSiN samples mainly consist of fcc AlN phase with a small amount of hcp AlN phase. Furthermore, a small amount of fcc TiN phase can only be observed in Al0.82Ti0.08Si0.10N coating. The hardness of Al0.82Ti0.18N, Al0.88Ti0.09Si0.03N, and Al0.82Ti0.08Si0.10N coatings is 33.0 ± 0.6 GPa, 38.3 ± 1.2 GPa and 27.0 ± 0.8 GPa, respectively. Al0.88Ti0.09Si0.03N coating has obvious potential value for industrial applications.  相似文献   

4.
《Ceramics International》2019,45(10):12903-12909
Titanium, Ti-doped SrFe1-xTixO3-δ (x = 0.1–0.5) perovskite-structured ceramics were synthesized via solution combustion. The structural, morphological, and electrochemical behaviors of the as-synthesized materials were investigated to determine the applicability of SrFe1-xTixO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells. X-ray diffraction analysis confirmed the formation of a single-phase cubic perovskite structure. The unit volume of this perovskite structure increased as the amount of Ti dopant increased. Morphological analysis revealed that the porosity of the SrFe1-xTixO3-δ perovskite cathode film was inversely proportional to the amount of Ti dopant. The cathode SrFe0·9Ti0·1O3-δ film exhibited a high porosity of 24.74 ± 0.52%, a low but acceptable hardness value of 0.70 ± 0.01 GPa and an area specific resistance of 0.57 Ω cm2. These results suggested that cobalt-free SrFe1-xTixO3-δ cathode was still not good enough to be compared with the existing cobalt-containing cathode such as lanthanum strontium cobalt ferrite. But, the results obtained from this work can be considered as a major turning point as the literature works on SrFe1-xTixO3-δ cathode showed excellence electrochemical performance. The contradict result between the present and past studies proved that the use of SrFe1-xTixO3-δ cathode is worthy of being studied into details to confirm its capability.  相似文献   

5.
Pb0.325Sr0.675Ti1-xMnxO3 ceramics (x?=?0, 0.001, 0.005, 0.01, and 0.05) were successfully prepared by traditional solid-state reaction method. It was found that the lattice constant calculated through Rietveld refinement initially increased and then decreased with increasing Mn content, which was attributed to the variation in valence state of Mn and Ti ions. The microstructure gradually varied from the coexistence of large grains and fine grains for x?=?0 to the uniform grain for x?=?0.05 by increasing the doping Mn ions. With increasing Mn content from x?=?0 to x?=?0.05, the Curie temperature (Tc) dramatically decreased from 25?°C to ??40?°C and dielectric maximum decreased from 27,100 to 13,200. Pb0.325Sr0.675Ti1-xMnxO3 ceramics with x?=?0.001 showed the lowest dielectric loss of 0.006 with a relatively high dielectric peak value of ~ 21,000. The grain boundaries resistance obtained from the complex impedance decreased with the increase of Mn content. The decrease in resistance was ascribed to oxygen vacancies and electronics produced by the change of ionic valence state. X-ray photoemission spectroscopy revealed that Ti ions were Ti4+ and the valences of Mn ions were deduced to be mainly in the form of Mn2+ and/or Mn3+ for ceramics with low content of Mn, while the Ti ions were in the form of Ti3+ and Ti4+ and Mn ions were diverse valence states with the coexistence of Mn2+, Mn3+, and Mn4+ for ceramics with x?=?0.01 and 0.05.  相似文献   

6.
Nano‐multilayered TiAlN/CrAlN coatings combining advantages of Ti‐Al‐N and Cr‐Al‐N are considered to be promising candidates for advanced machining processes. Here, the structure and thermal properties of Ti1‐xAlxN/CrAlN (x = 0.48, 0.58, and 0.66) multilayered coatings as well as referential Ti1‐xAlxN and Cr0.32Al0.68N monolithic coatings were investigated. Ti1‐xAlxN coatings show a structural transformation from cubic structure for x = 0.48 to mixed cubic and wurtzite structure for x = 0.58 and 0.66, and Cr0.32Al0.68N coating exhibits a single cubic structure. Through a multilayer arrangement with Cr0.32Al0.68N layers, the Ti0.52Al0.48N and Ti0.42Al0.58N layers can be stabilized in their metastable cubic structure, but the Ti0.34Al0.66N layer still tends to crystallize in the mixed cubic and wurtzite structure. The hardness of Ti0.52Al0.48N/CrAlN and Ti0.42Al0.58N/CrAlN coatings is higher than that of corresponding monolithic coatings regardless of as‐deposited and annealed states. Especially, after annealing at 800°C, the Ti0.52Al0.48N/CrAlN and Ti0.42Al0.58N/CrAlN coatings reach their peak hardness of ~34.2 and 32.8 GPa due to the spinodal decomposition of Ti1‐xAlxN layers. However, the oxidation resistance of Ti1‐xAlxN/CrAlN coatings is mainly up to the Al content of Ti1‐xAlxN layers, where only the Ti0.34Al0.66N/CrAlN coating can survive the 10 h exposure to air at 1000°C.  相似文献   

7.
CaCu3-xCrxTi4O12 (x?=?0.00–0.20) ceramics were prepared via a polymer pyrolysis solution route. Their dielectric properties were improved by Cr3+ doping resulting in an optimal dielectric constant value of 7156 and a low tanδ?value of 0.092 in a sample with x?=?0.08. This might have resulted from a decrease in oxygen vacancies at grain boundaries. XANES spectra confirmed the presence of Cu+ ions in all ceramic samples with a decreasing Cu+/Cu2+ ratio due to an increased content of Cr3+ ions. All CaCu3-xCrxTi4O12 ceramics showed nonlinear characteristic with improvement in both the breakdown field (Eb) and its nonlinear coefficient (α). Interestingly, the highest values of α, ~ 114.4, and that of Eb, ~8455.0?±?123.6?V?cm?1, were obtained in a CaCu3-xCrxTi4O12 sample with x?=?0.08. The improvement of dielectric and nonlinear properties suggests that they originate from a reduction of oxygen vacancies at grain boundaries.  相似文献   

8.
The single-phase formation and related elastic properties of (TiZrNbTaMo)C with one equimolar and twenty non-equimolar systems have been investigated by first-principles calculation. Based on the calculation results, the “composition-structure-elastic properties” correlation heatmapping predicts that Ti element is favorable for increment of hardness and Young’s modulus, while Mo element shows contrary tendency. The (TixZr2Nb2Ta2Mo4-x)C10-y (x = 1, 2, 3) have been fabricated by carbothermal reduction assisted hot-pressing sintering. The obtained experimental results validate the prediction trend of first-principles calculation. The optimization hardness and Young’s modulus is achieved at (Ti3Zr2Nb2Ta2Mo1)C10-y, and the corresponding value is 27.1 ± 0.6 GPa at 9.8 N and 490 ± 5 GPa, respectively. Noteworthily, the single-phase formation mainly depends on configuration entropy. The equimolar (Ti2Zr2Nb2Ta2Mo2)C10-y exhibits a single-phase with homogeneous chemical composition, but some element segregation can be found in the other two non-equimolar samples sintered at 2100 ℃.  相似文献   

9.
Ca0.5Sr0.5Zr4-xTixP6O24 (x?=?0?0.2) ceramics belonging to the NZP family were prepared and dense ceramics with no microcracks were obtained. All of the ceramic samples were still composed of the typical NZP structure with a small amount of Ti4+ substitution for Zr4+. The mechanical and thermal expansion properties of the ceramics were characterized and the result showed that the flexural strength monotonically increased to 66.5?MPa. The thermal expansion coefficient varied from 1.8 to 3.4?×?10?6/°C with Ti4+ content increasing. Thus, it was clear that the substitution of Ti4+ for Zr4+ had obvious effects on the sinterability, mechanical and thermal expansion properties of Ca0.5Sr0.5Zr4-xTixP6O24 ceramics, which were discussed in detail.  相似文献   

10.
Metastable c‐AlxT1?xN is an important and well‐established hard coating in the tool industry. To improve the mechanical and thermal properties, Al‐rich c‐AlxTi1?xN coatings with controllable preferred crystal orientations were fabricated via low‐pressure chemical vapor deposition (LP‐CVD) in an industrial plant, using an AlCl3–TiCl4–NH3–Ar–H2 precursor system. The c‐AlxTi1?xN coatings with (100)‐ and (111)‐preferred orientations and average x values of 0.82 and 0.73, respectively, comprised c‐Al(Ti)N/c‐Ti(Al)N nanolamellae with average compositions of c‐Al0.9Ti0.1N/c‐Al0.6Ti0.4N and c‐Al0.80Ti0.20N/c‐Al0.50Ti0.50N; the average lamellar periods were 7.7 and 4.5 nm, respectively. High‐resolution transmission electron microscopy indicated that the c‐Al(Ti)N/c‐Ti(Al)N nanolamellae were modulated along the <100> direction, implying coherent spinodal decomposition of c‐AlxTi1?xN in the as‐deposited state. The hardness of the c‐AlxTi1?xN coatings varied from 33 to 36 GPa, depending on the (100)‐ or (111)‐preferred orientation. Residual stress measurements in the as‐deposited state showed tensile stress values of 1.8 and 4.6 GPa for the (100)‐ and (111)‐oriented c‐AlxT1?xN coatings, respectively. This stress may be generated by the difference in the thermal expansion coefficient of the c‐AlxT1?xN coating and the carbide substrate and by coherency stress in the c‐Al(Ti)N/c‐Ti(Al)N nanolamellae. In situ high‐temperature X‐Ray diffraction results revealed high thermal stability up to 1000°C.  相似文献   

11.
Single-phase Ruddlesden popper of La2-xSrxCoO4 nanopowders with x?=?0.7, 0.9, 1.1 and 1.3, were successfully synthesized by a modified sol-gel method. Structural stability and morphology of the prepared samples were examined using HT-XRD analysis, FE-SEM and SEM techniques. HT-XRD analysis of the samples, in the range of room temperature to 850?°C, revealed that the structure of all samples was tetragonal. The electrical conductivity measurements, in the range of room temperature to 850?°C, indicated that by increasing the temperature the electrical conductivity mechanism inverts from variable range hopping to the nearest-neighbor hopping of small polarons. In addition, it was found that by increasing Sr concentration the structure of the sintered samples becomes more stable. The electrochemical characterization was carried out using the impedance spectroscopy (EIS) measurements on symmetrical cells at three different temperatures, 650?°C, 750?°C and 850?°C. The area specific polarization resistance (ASR) of La2-xSrxCoO4-CGO-La2-xSrxCoO4 symmetrical cell, in oxygen flow, was obtained about 1.07, 0.35, 0.33 and 0.43 Ωcm2 at 850?°C for the samples with x?=?0.7, 0.9, 1.1 and x?=?1.3, respectively. According to our EIS results, the main rate-limiting step for La2-xSrxCoO4 cathode performance is the dissociation process of oxygen at the surface of cathode at 650?°C and the charge transfer limiting in the cathode/electrolyte at 750?°C and 850?°C. Our results showed that the samples with Sr contents of x?=?0.9 and x?=?1.1 can be the promising cathodes for IT-SOFC applications.  相似文献   

12.
V-containing nitride coatings recently attract a wide range of research interests owing to their excellent tribological properties. To evaluate their comprehensive properties, a comparative study on the intrinsic thermal stability and oxidation resistance of TiAlN and TiAlVN coatings are conducted here. Ti0.56Al0.44N, Ti0.50Al0.44V0.06N, and Ti0.40Al0.50V0.10N coatings, deposited by cathodic arc evaporation, exhibit a single-phase face-centered cubic structure with a hardness of 28.9–29.8 GPa. The V-containing coatings show a pronounced age-hardening upon annealing, which contributes to a hardness increase of 3.7 and 4.8 GPa at 800 °C for Ti0.50Al0.44V0.06N and Ti0.40Al0.50V0.10N, respectively, corresponding to 2.9 GPa for Ti0.56Al0.44N. Also, alloying with V retards the formation of wurtzite AlN upon annealing, especially in Ti0.50Al0.44V0.06N, and thus contributes to a higher hardness above 30 GPa even annealing at 1100 °C, while the hardness of Ti0.56Al0.44N significantly reduces to 27.8 ± 0.6 GPa. However, alloying with V into TiAlN leads to an earlier formation of rutile TiO2 and also Ti-rich oxide top-layer on the outside surface instead of dense Al2O3, and thus degrades the oxidation resistance. When exposed to air at 700 °C for 10 h, the Ti0.50Al0.44V0.06N and Ti0.40Al0.50V0.10N coatings suffer from a severe oxidation, whereas only a compact oxide scale with a thickness of ~ 80 nm for Ti0.56Al0.44N is formed.  相似文献   

13.
《Ceramics International》2022,48(18):25798-25807
In this work, through the study of the obtained Cu–Ti–Si–N intermediate products by controlling the reaction degree of Ti and Si3N4 powder in Cu melts at 1250~1300 °C, the effects of different Ti: Si3N4 mass ratios on the microstructure evolution of Ti–Si3N4 reaction in Cu melts were verified. When the mass ratio of Ti: Si3N4 is higher, such as 3.09:1, TiN will cooperate with Ti5Si3 and depend on each other to nucleate and grow to form TiN/Ti5Si3 composites. The formed TiN are spherical and wetted by Ti5Si3 to uniformly disperse in Cu melts. As a result, the TiN–Ti5Si3 hybrid reinforced Cu matrix composites will be formed. However, when the mass ratio of Ti: Si3N4 is lower, such as 1.37:1, Ti and Si3N4 will firstly react to form TiN and Ti–Si liquid. The formed TiN are irregularly polygonal and connect with each other. The Ti–Si liquid will combine with Cu melts to form Cu–Ti–Si liquid and finally form δCu4Si, ηCu3Si and τ1-CuSiTi phases during the colling stage. In this case, TiN are difficult to be wetted, and the Ti–Si3N4 compact will keep its original shape and not spread in Cu melts.  相似文献   

14.
The Ti3Al1.2−xSixC2 (x = 0, 0.2, 0.4) powders were synthesized from Ti, Al, Si, and TiC powders, and nearly pure Ti3Al1.2−xSixC2 bulks were fabricated by the means of two-time hot-pressing method. Significant strengthening effect in bulks was found after the addition of 0.2 Si and 0.4 Si to form Ti3Al(Si)C2 solid solutions. The flexural strengths of Ti3AlSi0.2C2 and Ti3Al0.8Si0.4C2 were 485 and 554 MPa, 14% and 30% larger than the strength of Ti3AlC2, respectively. The Vickers hardness of these compounds were separately, 6.95 and 7.57 GPa, representing the enhancements of 37% and 49% over those of Ti3AlC2. The tribological behavior was studied by dry-sliding method with a S45C steel at the sliding speed of 30 m/s and the normal load of 20-80 N. The results showed that after incorporating different contents of Si, the friction coefficient was between 0.22 and 0.30, correspondingly lower wear rate was 3.19-2.61 × 10−6 mm3/Nm. These excellent tribological performances were attributed to the presence of continuous self-generated oxidized films during tribological examination. Finally, the phase compositions and microhardness of the oxidized films were analyzed and characterized.  相似文献   

15.
In this study, Ti–Si–C composite coatings were synthesized via plasma spraying of agglomerated powders prepared by a spray drying/precursor pyrolysis technology using Ti, Si, and sucrose powders. The influence of Si content, ranging from 0 wt% to 24 wt%, on the microstructure, mechanical properties, and oxidation resistance of the composite coatings was investigated. Results show that the phase composition of the Ti–Si–C composite coatings changes with the increasing Si content. The coatings without Si addition consist of TiC and Ti3O; the coatings with 6–18 wt% Si are composed of TiC, Ti5Si3, and Ti3O; the coatings with Si content of 24 wt% form only TiC and Ti5Si3 phases. As the Si content increases, the hardness of the Ti–Si–C composite coatings increases first and then decreases, depending on the intrinsic hardness of the ceramic phases, the brittleness of Ti5Si3, and the defects such as pores and cracks. The Ti–Si–C composite coatings have high wear resistance due to the in-situ synthesized high-hardness TiC and Ti5Si3. Owing to the high brittleness of Ti5Si3, the increasing Si content leads to higher wear volume loss at room temperature, which can be partially improved in high-temperature wear tests. The oxidation resistance of Ti–Si–C composite coatings increases with the increase of Si content, and the higher the oxidation temperature, the more obvious the influence of the Si addition on oxidation resistance.  相似文献   

16.
Owing to the good physicochemical compatibility and complementary mechanical properties of Ti3SiC2 and Al2O3, Ti3SiC2/Al2O3 composites are considered as ideal structural materials. However, TiC and TiSi2 typically coexist during the synthesis of Ti3SiC2/Al2O3 composites through an in-situ reaction, which adversely affects the mechanical properties of the resulting composites. In this study, Ti3SiC2/Al2O3 composites were prepared via in-situ hot pressing sintering at 1450 °C. Ge, which was used as a sintering aid, improved the purity and mechanical properties of the Ti3SiC2/Al2O3 composites. This is because Ge replaced some of the Si atoms to compensate the evaporation loss of Si to form Ti3(Si1-xGex)C2, which showed a crystal structure similar to that of Ti3SiC2. Furthermore, the molten Ge accelerated the diffusion reaction of the raw materials, increasing the overall density of the Ti3SiC2/Al2O3 composites. The optimum Ge amount for improving the mechanical properties of the composites was found to be 0.3 mol. The flexural strength, fracture toughness, and microhardness of the composite with the optimum Ge amount were 640.2 MPa, 6.57 MPa m1/2, and 16.21 GPa, respectively. The formation of Ti3(Si1-xGex)C2 was confirmed by carrying out X-ray diffraction, energy dispersive spectroscopy, and transmission electron microscopy analyses. A model crystal structure of Ti3(Si1-xGex)C2 doped with 0.3 mol Ge was established by calculating the solid solubility of Ge.  相似文献   

17.
A boron-containing SiHfC(N,O) amorphous ceramic was synthesized upon pyrolysis of a single-source-precursor at 1000 °C in Ar atmosphere. The high-temperature microstructural evolution of the ceramic at high temperatures was studied using X-ray powder diffraction, Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy and transmission electron microscopy. The results show that the ceramic consists of an SiHfC(N,O)-based amorphous matrix and finely dispersed sp2-hybridized boron-containing carbon (i.e. ByC). High temperature annealing of ByC/SiHfC(N,O) leads to the precipitation of HfCxN1-x nanoparticles as well as to β-SiC crystallization. After annealing at temperatures beyond 1900 °C, HfB2 formation was observed. The incorporation of boron into SiHfC(N,O) leads to an increase of its sintering activity, consequently providing dense materials possessing improved mechanical properties as compared to those of boron-free SiC/HfC. Thus, hardness and elastic modulus values up to 25.7 ± 5.3 and 344.7 ± 43.0 GPa, respectively, were measured for the dense monolithic SiC/HfCxN1-x/HfB2/C ceramic nano/micro composite.  相似文献   

18.
Sr0.99Ce0.01Ti1-xO3 (SCT, x?=?0, ±?0.0025, ±?0.0050, 0.0075) ceramics were prepared by solid state reaction methods and sintered in air atmosphere at different temperatures, with a soaking time of 2?h. The dielectric properties of all samples presented excellent temperature independence over a broad temperature range from 25 to 330?℃ and frequency independence between 10?kHz and 1?MHz. Sr0.99Ce0.01Ti0.9925O3 (SCT0.9925) ceramics sintered in air atmosphere exhibited a high permittivity (~5400) and a low dielectric loss (~0.01) measured at room temperature and 1?kHz. XPS and complex impedance spectroscopy analysis confirmed that the high permittivity and low dielectric loss were attributed to the fully ionized oxygen vacancies and giant defect-dipoles in Ti-deficient samples. However, a higher dielectric loss of Ti-rich samples is owing to the destruction of giant defect dipoles, in which highly localized electrons were transformed into hopping electrons.  相似文献   

19.
The Ca1-xSrxWO4 (x?=?0, 0.02, 0.04, 0.06, 0.08, 0.10) ceramics were fabricated through solid-state reaction, and the relationships among microwave dielectric properties of Ca1-xSrxWO4, bond ionicity, lattice energy and bond energy were systematically investigated for the first time. The patterns of X-ray diffractions of Ca1-xSrxWO4 presented tetragonal scheelite structure and no second phase appeared throughout the entire compositions. Dielectric properties of Ca1-xSrxWO4 were proved to be related to the microstructures: dielectric constant (εr) of Ca1-xSrxWO4 was dependent on the bond ionicity; the quality factor (Q×f0) of Ca1-xSrxWO4 was affected by W-site lattice energy when intrinsic loss is dominant; the temperature coefficient of resonant frequency (|τf|) would increase if B-site bond energy decreased. Ca1-xSrxWO4 ceramic showed excellent microwave dielectric properties, εr =?9.42, Q×f0 =?79876?GHz and τf =??18.8?ppm/°C when x?=?0.08 and sintered at 1100?°C for 4?h.  相似文献   

20.
Thermodynamically stable (Hf1–xTax)C (x?=?0.1–0.3) compositions were selected by First Principle Calculation and synthesized in nanopowders via high-energy ball milling and carbothermal reduction of commercial oxides at 1450?°C. The formation of a solid solution during powder synthesis was investigated. The solid solution carbide powders were sintered at 1900?°C by spark plasma sintering without a sintering aid. As a result, the (Hf1–xTax)C solid solution carbides exhibited high densities, excellent hardness and fracture toughness (ρ: 98.7–100.0%, HVN: 19.69–19.98?GPa, KIC: 5.09–5.15?MPa?m1/2) compared with previously reported HfC and HfC–TaC solid solution carbides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号