首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Ferroelectricity in pure zirconia (ZrO2) thin films, manufactured on Si (100) substrates via the chemical solution deposition method using all-inorganic aqueous salt precursor, has been demonstrated for the first time. The influence of thickness on the crystalline structure and ferroelectric properties of the thin films were measured and showed that they were strongly affected by the film thickness. The structural data indicated that as the film thickness increased from 30 nm to 50 nm, the m-phase fraction increased, and a phase transition from orthorhombic to cubic and then tetragonal occurred near the main diffraction peak of 30.7°. The lowest m-phase fraction of 15.4% was obtained in the pure ZrO2 film with a thickness of 30 nm, and after 103 field cycling, it exhibited the highest relative permittivity of 39.6 as well as the highest residual polarization of 8.5 μC/cm2.  相似文献   

2.
《Ceramics International》2023,49(15):25543-25548
Transparent conducting thin films have been widely used in lots of fields. The absence of high-performance hole-type transparent conducting thin films, however, seriously limits the wider applications. LaRhO3 as a type of perovskite material shows hole-type conduction with semiconductor-like properties and no investigations have been carried out about transparent conducting properties on LaRhO3 thin films. Here, LaRh1-xNixO3 (x = 0, 0.05, 0.1) thin films were firstly deposited by chemical solution deposition, showing epitaxial growth on single crystal SrTiO3 (001) substrates with the epitaxial relationship of LaRhO3(001)[110]||SrTiO3(001)[110]. With the doping of Ni element, the surface morphology became denser. Hall measurements confirmed that the hole concentration was enhanced with Ni doping, resulting in the decreased resistivity. Low resistivity of 17.3 mΩ cm at 300K was obtained for the LaRh0.9Ni0.1O3 thin films. The electrical transport mechanisms were investigated, showing thermal activation at high temperatures and variable range hopping model for the doped thin films at low temperatures. The transmittance within the visible range for all thin films was higher than 50%. The results will provide a feasible route to deposit hole-type transparent conducting LaRhO3-based thin films.  相似文献   

3.
Barium titanate (BaTiO3) thin films are prepared by conventional 2-methoxy ethanol-based chemical solution deposition. We report highly c-axis-oriented BaTiO3 thin films grown on silicon substrates, coated with a lanthanum oxynitrate buffer layer of 8.9 nm. The influence of the intermediate buffer layer on the crystallization of BaTiO3 film is investigated. The annealing temperature and buffer layer sintering conditions are optimized to obtain good crystal growth. X-ray diffraction measurements show the growth of highly oriented BaTiO3 thin films having a single perovskite phase with tetragonal geometry. The scanning electron microscopy and atomic force microscopy studies indicate the presence of smooth, crack-free, uniform layers, with densely packed crystal grains on the silicon surface. A BaTiO3 film of 150-nm thickness, deposited on a buffer layer of 7.2 nm, shows a dielectric constant of 270, remnant polarization (2Pr) of 5 μC/cm2, and coercive field (Ec) of 60 kV/cm.  相似文献   

4.
The color-tunable up-conversion (UC) emission was observed in ZrO2:Yb3+, Er3+ thin films synthesized on fused silica substrates using a chemical solution deposition method. The crystal structure, surface morphology image and optical transmittance of ZrO2:Yb3+, Er3+ thin films were detected in the matter of Yb3+/Er3+ doping content. Under excitation by 980?nm infrared light, intense UC emission can be obtained from ZrO2:Yb3+, Er3+ thin films. Photoluminescence study shows that there are two emission bands centered at 548?nm and 660?nm in the UC luminescence spectra, which can be owing to (2H11/2,4S3/2)→4I15/2 and 4F9/24I15/2 transitions of Er3+ ions, respectively. In addition, the color coordinate of UC emission between green-red can be tuned by properly adjusting the dopant concentration, because the composition of Yb3+/Er3+ affect the red/green ratio via the process of cross relaxation and energy back transfer. Our study suggests that ZrO2:Yb3+, Er3+ thin films can be considered as promising materials for new photoluminescence devices.  相似文献   

5.
Bismuth ferrite (BiFeO3) is an attractive multiferroic material that shows strong ferroelectric and antiferromagnetic properties. Nevertheless, producing high-quality oriented BiFeO3 on technology-important platinized silicon substrates by low-cost solution deposition methods is still challenging. In this work, polycrystalline Mn and Ti co-doped BiFeO3 (BFO) thin films were fabricated on platinized silicon substrates by a solution deposition method. PbTiO3 nanocrystals were used as a seed layer between the electrode and the BFO thin films to induce a preferential (100) pseudocubic orientation. We show that the introduction of a PbTiO3 seed layer strongly reduces the leakage current. The films show excellent room-temperature ferroelectric properties at low frequencies (300 Hz), with epitaxial-like remanent polarization as high as 51 μC/cm2 and coercive field of 500 kV/cm.  相似文献   

6.
Lead zirconate titanate—Pb(Zr0.45Ti0.55)O3 thin films are grown on Pt1 1 1/Ti/SiO2/Si1 0 0 substrates by a sol–gel method with 1 0 0/0 0 1 and 1 1 1 preferred orientations. Film orientation was controlled mainly by the annealing process and temperature. Films with 1 0 0/0 0 1 orientation consist of a uniform microstructure with micron size grains, whereas films with 1 1 1 orientation contain sub-micron grains. The electrical properties were influenced markedly by the microstructure and orientation of the films. The 1 1 1 oriented films exhibit a square-like hysteresis loop with remnant polarization (Pr) reaching 46 μC/cm2 under 550 kV/cm, whereas 1 0 0/0 0 1 oriented films have a Pr of 20 μC/cm2 with more slim hysteresis curves. Aging of the precursor solutions resulted in films growing with 1 0 0/0 0 1 texture and displaying inferior electrical properties.  相似文献   

7.
BiFeO3 thin films, specifically those fabricated by chemical solution deposition, suffer from severe leakage that hinder the acquirements of their intrinsic high polarizations and are thus normally not considered for use in practical electronics. The controlled fabrication of thin films with reduced leakage is of vital importance. In the present work, BiFeO3 films (with thicknesses below ~300 nm), assisted by an interfacial amorphous layer, were fabricated by chemical solution deposition on Pt/Ti/SiO2/Si substrates. This facile method facilitates the growth of the mentioned amorphous layer, and the ferroelectric properties of the obtained films were greatly enhanced. The conducting mechanisms of both types of thin films were systematically investigated to understand the impact of the designed interface. The results not only advance the potential use of BiFeO3 thin films in electromechanical devices but also promote chemical solution deposition as a promising methodology for the fabrication of high-quality ferroelectric films with compressed leakage.  相似文献   

8.
《Ceramics International》2016,42(16):18692-18699
Bi1−xPrxFe0.97Mn0.03O3 (x=0.00, 0.05, 0.10, 0.15, 0.20) thin films were deposited on FTO/glass substrate using chemical solution deposition. The influences of Pr doping on the crystalline structure and multiferroic properties were investigated. In the X-ray diffraction and Raman spectra results, the crystal structures of Bi1−xPrxFe0.97Mn0.03O3 films revealed a gradual transformation from the trigonal structure to the tetragonal structure. The leakage current densities of Bi1−xPrxFe0.97Mn0.03O3 films are one order of magnitude lower than that of BiFeO3. Compared with unsaturated polarization-electric field hysteresis loop of BiFeO3 film, the Pr and Mn co-doped BFO films have significantly improved ferroelectric properties. The improved remnant polarization (Pr=91.3 µC/cm2) and the positive switching current (I=0.028 A) have been observed in Bi0.85Pr0.15Fe0.97Mn0.03O3 film. The improved electrical properties are attributed to the structure transformation, increasing grain boundaries, low oxygen vacancies ratio and increasing Fe3+ concentration. In addition, the saturation magnetization of Bi0.85Pr0.15Fe0.97Mn0.03O3 film is 1.81 emu/cm3, which is approximately three times higher than pure BiFeO3 (Ms=0.67 emu/cm3).  相似文献   

9.
The multiferroic behavior with ion modification using rare-earth cations on crystal structures, along with the insulating properties of BiFeO3 (BFO) thin films was investigated using piezoresponse force microscopy. Rare-earth-substituted BFO films with chemical compositions of (Bi1.00−xRExFe1.00O3 (x=0; 0.15), RE=La and Nd were fabricated on Pt (111)/Ti/SiO2/Si substrates using a chemical solution deposition technique. A crystalline phase of tetragonal BFO was obtained by heat treatment in ambient atmosphere at 500 °C for 2 h. Ion modification using La3+ and Nd3+ cations lowered the leakage current density of the BFO films at room temperature from approximately 10−6 down to 10−8 A/cm2. The observed improved magnetism of the Nd3+ substituted BFO thin films can be related to the plate-like morphology in a nanometer scale. We observed that various types of domain behavior such as 71° and 180° domain switching, and pinned domain formation occurred. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe.  相似文献   

10.
In general, the strain effect and the electrostatic effect are important factors influencing the electrical properties of ferroelectric superlattices. However, the interfacial diffusion may also greatly influence the electrical properties of ferroelectric superlattices. Here, we deposited PbTiO3/PbZrO3 (PTO/PZO) superlattices on Nb-doped SrTiO3 (NSTO) single-crystal substrates by pulse laser deposition with the same deposition processes but different cooling processes to explore the effects of interface diffusion on the structural and electrical properties of the superlattices. The experimental results showed that with increasing the holding time in the cooling process after deposition, the ferroelectric and dielectric properties were enhanced, meanwhile, the leakage current density was reduced. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) results showed that the PTO/PZO interfaces became blurred with increasing cooling time. Therefore, the increase in ferroelectric and dielectric properties and the decrease in leakage current density may be due to the interdiffusion of Ti and Zr ions at the PTO/PZO interfaces resulting in the formation of Pb(ZrxTi1-x)O3 (PZT) and the decrease of interface defects at the PTO/PZO interfaces. Our results demonstrate that besides the strain and electrostatic effects, the interdiffusion of the elements at the interfaces is also an important factor that influences the electrical properties of ferroelectric superlattices.  相似文献   

11.
12.
LaNiO3 thin films were deposited on SrLaAlO4 (1 0 0) and SrLaAlO4 (0 0 1) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700 °C in tube oven. Structural, morphological, and electrical properties of the LaNiO3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (1 0 0) and (0 0 1) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15–30 nm and 20–35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces.  相似文献   

13.
Bulk ceramic samples of BiFeO3 were light doped (up to 1%) with Nb5+ in the place of Fe3+ (B-site doping) and their multiferroic properties were investigated using XRD, SEM, polarization (PMTS) and magnetization (SQUID) techniques. It is shown that even the small percentages of doping can notably change electric and magnetic behavior. Electric conductivity differs by two orders of magnitude between samples doped with 0.2% and 1% Nb. The ferroelectric behavior strongly depended on conduction mechanism, and transition from space-charge-limited current (SCLC) conduction to trap-filled limited (TFL) conduction regime reflected on a change in hysteresis patterns, particularly for the samples with 0.2% and 0.5% Nb. Separation of ZFC-FC magnetization curves occurred for all Nb concentrations and increased with Nb doping. Weak ferromagnetic behavior and the increase of remnant magnetization with Nb concentration was observed from the hysteresis measurements. Coercive field changed drastically compared to the pure BiFeO3, namely, the sample with 1% Nb exhibited very high coercive magnetic field of ~ 10?kOe.  相似文献   

14.
Lead-free ferroelectric Pr3+-doped (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x?=?0–0.5) (hereafter abbreviated as Pr-NBT-xSTO) thin films were prepared on Pt/Ti/SiO2/Si and fused silica substrates by a chemical solution deposition method combined with a rapid thermal annealing process at 700?°C, and their structural phase transition, dielectric, ferroelectric, and photoluminescent properties were investigated as a function of STO content. Raman analysis shows that with increasing STO content, the phase structures evolve from rhombohedral phase to coexistence of rhombohedral and tetragonal phases (i.e. morphotropic phase boundary), and then to tetragonal phase. The structural phase transition behavior has been well confirmed by temperature- and frequency- dependent dielectric measurements. Meanwhile, the variation in photoluminescence intensity of Pr3+ ions with different STO content in the NBT-xSTO thin films also indicates that there exists a clear structural phase transition when the film composition is close to the morphotropic phase boundary. Superior dielectric and ferroelectric properties are obtained in the Pr-NBT-0.24STO thin films due to the formation of morphotropic phase boundary. Our study suggests that Pr-NBT-xSTO thin films be promising multifunctional materials for optoelectronic device applications.  相似文献   

15.
The BaSn0.15Ti0.85O3 (BTS) thin films are prepared on Pt-Si substrates with thickness ranging from ~ 60?nm to ~ 380?nm by radio frequency magnetron sputtering. The effects of thickness on microstructure, surface morphologies and dielectric properties of thin films are investigated. The thickness dependence of dielectric constant is explained based on the series capacitor model that the BTS thin film is consisted by a BTS bulk layer and an interfacial layer (dead layer) between the BTS and bottom electrode. The thin films with thickness of 260?nm give the largest figure of merit of 76.9@100?kHz, while the tunability and leakage current density are 64.6% and 7.46?×?10?7 A/cm2 at 400?kV/cm, respectively.  相似文献   

16.
Lead-free Bi0.5Na0.5TiO3 (BNT) piezoelectric thin films were deposited on Pt/TiOx/SiO2/Si substrates by Sol-Gel method. A dense and well crystallized thin film with a perovskite phase was obtained by annealing the film at 700 °C in a rapid thermal processing system. The relative dielectric constant and loss tangent at 12 kHz, of BNT thin film with 350 nm thickness, were 425 and 0.07, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 9 μC/cm2 and a coercive field of 90 kV/cm. Piezoelectric measurements at the macroscopic level were also performed: a piezoelectric coefficient (d33effmax) of 47 pm/V at E = 190 kV/cm was obtained. The piezoresponse force microscopy data confirmed that BNT thin films present ferroelectric and piezoelectric behavior at the nanoscale level.  相似文献   

17.
Mn-doped BiFeO3 (BiFe1–xMnxO3, x = 0, 0.03, 0.05, 0.10, 0.15 and 0.20) polycrystalline multiferroic thin films were successfully synthesized using the facile sol-gel spin-coating method. The crystal structures, surface features, elements valences, and magnetic properties of as-prepared samples were systematically explored. X-ray diffraction and Raman spectroscopy studies revealed the substitutions of Mn into the Fe site and a rhombohedral-to-orthorhombic phase transition. The Field Emission Scanning Electron Microscopy showed a decrease in the average particle sizes and an improvement of surface morphology with increasing the concentration of the substitutes. Energy-dispersive X-ray spectroscopy confirmed the doping concentration of Mn2+ in the samples. X-ray photoelectron spectroscopy indicated the co-existence of Mn2+/Mn3+ ions in the doped films. The remnant magnetization value of BiFe0.90Mn0.10O3 thin film was found to be approximately six times than that of pure BiFeO3 thin film under a magnetic field of 10 kOe. The enhanced magnetic property of BiFe0.90Mn0.10O3 thin film was mainly ascribed to the structural distortion of spin cycloid and the enhancement of super-exchange interaction between the Fe3+ (Mn2+) and O2- ions.  相似文献   

18.
Pure BiFeO3 (BFO) and Bi1−xTbxFeO3 (BTFO) thin films were successfully prepared on FTO (fluorine doped tin oxide) substrates by the sol–gel spin-coating method. The effects of Tb-doping on the structural transition, leakage current, and dielectric and multiferroic properties of the BTFO thin films have been investigated systematically. XRD, Rietveld refinement and Raman spectroscopy results clearly reveal that a structural transition occurs from the rhombohedral (R3c:H) to the biphasic structure (R3c:H+R-3m:R) with Tb-doping. The leakage current density of BTFOx=0.10 thin film is two orders lower than that of the pure BFO, i.e. 5.1×10−7 A/cm2 at 100 kV/cm. Furthermore, the electrical conduction mechanism of the BTFO thin films is dominated by space-charge-limited conduction. The two-phase coexistence of BTFOx=0.10 gives rise to the superior ferroelectric (2Pr=135.1 μC/cm2) and the enhanced ferromagnetic properties (Ms=6.3 emu/cm3). The optimal performance of the BTFO thin films is mainly attributed to the biphasic structure and the distorted deformation of FeO6 octahedra.  相似文献   

19.
《Ceramics International》2017,43(6):5047-5052
In this work, we have systematically investigated the piezo/ferroelectric response of (Pb, Ca)TiO3 thin films prepared by polymeric precursor method using simultaneously topography, piezoresponse force microscopy (PFM) and local piezoelectric hysteresis loop measurements. The thin films were grown on Pt/Ti/SiO2/Si substrates and annealed at 400, 500 and 600 °C and subjected to structural characterization using x-ray diffraction, infrared and micro-Raman spectroscopy. The ferroelectric domains structure and the piezoelectric response evolved as a function of thermal annealing temperature as well as the density of active grains (number of switchable domains) progressively increased. Another important characteristic of these films is the onset of large area showing the coexistence of active (stronger piezoresponse signal) and inactive (weak or non piezoresponse signal) grains embedded in the polycrystalline perovskite matrix. A combination of out-of-plane (OP) and in-plane (IP) PFM images revealed local features of polarization component magnitudes in samples surface. Well-defined local piezoelectric hysteresis loop was achieved on top of individual nanometer-scale grains in both samples annealed at 500 and 600 °C, and the switching behavior is evident.  相似文献   

20.
《Ceramics International》2023,49(18):30347-30354
Undoped and Cr-doped TiO2 thin films were synthesized by the dip-coating sol-gel process with titanium isopropoxide and chromium (III) chloride hexahydrate being used as the precursors. The chromium concentrations changed for different molar ratios, namely, 2, 4, and 8 wt.%. The samples, coated on glass substrates, were later annealed in air at 450 °C for 60 min. The influence of Cr doping on the structural, surface chemical, and optical properties of the samples was studied by several techniques, including EDS, Raman, UV–Vis, RT-PL, and XPS spectroscopies, as well as SEM and XRD. The diffraction patterns indicated that all the films displayed the anatase structure with the crystallite size decreasing with chromium doping. The same structure was confirmed by Raman spectroscopy measurements. UV–Vis absorption spectra of the samples showed a red shift of the fundamental absorption edge in the visible range following the increase of Cr doping concentration. In addition, the RT-PL study revealed that the dopant incorporation causes a decrease in the PL intensity. The EDS analysis revealed the presence of Ti, O, and Cr in the materials. Moreover, from high-resolution XPS Ti 2p spectra, titanium was found to be in the Ti4+ oxidation state evidencing the formation of TiO2, while the Cr 2p fitting analysis showed that chromium is present in the Cr (III) and Cr-metal states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号