首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
《Ceramics International》2017,43(17):15266-15274
The effects of fiber orientations on the grinding force and ground surface roughness in grinding 2D–Cf/C–SiC composites were investigated in this work. The characteristics of surface microstructure and the mechanism of the grinding phenomena are also discussed. The results show that the prominent removal mechanism for grinding the 2D-Cf/C-SiC composites is the brittle fracture, and the destruction of the composites is mainly via breaking of interfacial bonds, fiber fracture, and matrix cracking. The grinding force of different grinding surfaces follows the order: Surface B > Surface A > Surface C, and the surface roughness follows: Surface C > Surface A > Surface B. Grinding parameters, such as feeding speed, depth of cut, and wheel speed, have a great influence on the grinding force and surface roughness. This result suggests that this body of work offers a useful guideline for improving the design and processing of 2D–Cf/C–SiC composites.  相似文献   

2.
As one of the ceramic matrix composites (CMCs), carbon fiber-reinforced silicon carbide matrix (C/SiC) composites are promising materials used in various engineering applications owing to their superior properties. Precision surface grinding has been widely applied in the machining of CMC composites; however, the material removal mechanisms of C/SiC composites have not been fully elucidated yet. To reveal the material removal mechanisms in the grinding of chemical vapor infiltration-fabricated C/SiC composites, novel single-abrasive scratch tests were designed and conducted in two typical cutting directions. The experimental parameters, especially the cutting speed, conformed to the actual grinding process. The results show that the grinding parameters (feed rate, spindle speed, depth of cut, and cutting direction) have significant influences on the grinding forces, surface integrity, and affected subsurface region. The tangential force is in general larger than the normal force at the same cutting depth. Furthermore, both the tangential and normal forces in the longitudinal cutting direction are larger than those in the transverse cutting direction. The impacts and abrasive actions at the tool tip mainly caused the material removal. The predominant material removal mode is brittle fracture in the grinding of unidirectional C/SiC composites, because the damage behaviors of the C/SiC composites are mainly the syntheses of matrix cracking, fiber breakage, and fiber/matrix interfacial debonding. These results are rationalized based on the composite properties and microstructural damage features.  相似文献   

3.
The brittle matrix and the anisotropic reinforcing phase of Cf/SiC composites bring great challenges to the machining process. Polycrystalline diamond (PCD) tool was used to drill 2D Cf/SiC composites. The influence of thrust force on hole exit defects was analyzed, and the transformation rule of material removal mechanism and surface generation of hole were studied. With the increase of feed rate, the thrust force increased and the hole exit defects increased. Specific drilling energy was used as an index to quantitatively describe the energy consumption of material removal. With the increase of feed rate and the decrease of cutting speed, the brittle fracture mode of carbon fibers changed from micro-brittle fracture inside carbon fiber to macro-brittle fracture. Although the machined surface of carbon fibers produced by micro-brittle fracture was composed of many micro-fracture, the hole surface was flat overall. Therefore, the hole surface roughness was small.  相似文献   

4.
《Ceramics International》2022,48(18):26042-26054
Cf/SiC composites are used as advanced thermal protection and friction materials. However, machining these materials is difficult because of their hard, brittle, anisotropic, and heterogeneous characteristics. This study investigated the removal behavior and surface integrity of Cf/SiC composites during abrasive belt grinding using rubber contact wheels of various hardness. Additionally, detailed analysis was performed on their thermal-mechanical coupling characteristics, surface integrity (that is, surface roughness, surface micro morphology, and subsurface damages), and the grinding chips produced. Results revealed that with decreasing hardness of the contact wheel, the surface roughness in all directions, grinding force, and temperature decreased significantly. Moreover, the surface removal morphology of the Cf/SiC composites changed from macro-fracture to micro-fracture, and the subsurface morphology changed from SiC matrix cracking and carbon fibers pull-out to matrix plastic flow and fiber micro-fracture, respectively. Furthermore, strip chips with plastically squeezed and cut surfaces were visible in the grinding chips obtained under the 40-HA contact wheel. Therefore, the ductile removal behavior of the Cf/SiC composites was enhanced, and the surface quality in abrasive belt grinding with low-hardness contact wheels was markedly improved.  相似文献   

5.
Crack induced surface/subsurface damage in SiC ceramic grinding limits the industrial application. A single-grain scratching simulation based on the smoothed particle hydrodynamics (SPH) has been used to analyze the SiC grinding mechanism, including the material removal process, scratching speed effect on crack propagation, ground surface roughness, and scratching force. The simulation results showed that the material removal process went through the pure ductile mode, brittle assisted ductile mode, and brittle mode with the increase of the depth of cut. The critical depth of cut for ductile-brittle transition was about 0.35?µm based on the change of ground surface crack condition, surface roughness, and maximum scratching force. Increasing the scratching speed promoted the transformation of deep and narrow longitudinal crack in the subsurface into the shallow and wide transverse crack on the surface, which improved the surface quality. The SPH simulation results were indirectly validated by the cylindrical grinding experiments in terms of the critical single grain depth of cut for ductile-brittle transition, and the trend of ground surface roughness and grinding forces.  相似文献   

6.
Single-crystal silicon carbide (SiC) has gained tremendous attention for harsh-environment sensor applications due to its high-temperature tolerance and chemical resistance. However, there are many technological challenges in the fabrication of single-crystal SiC sensing microstructures such as thin SiC diaphragms for pressure sensors. This paper presents an ultrasonic vibration mill-grinding (UVMG) technique for the fabrication of 6H-SiC sensor diaphragms. The fundamental machining characteristics of UVMG are investigated experimentally compared with conventional mill-grinding (CMG). The experimental results show that the axial grinding force in UVMG is reduced by 60–70% compared to that in CMG. In addition, the wheel loading is severe in CMG, while the issue of wheel loading is significantly alleviated in UVMG due to the discontinuous cutting characteristic achieved in this method. As a result, sharp increase of the axial grinding force, which is accompanied by the crack of SiC workpiece, happens frequently in CMG after a total grinding depth of 200 µm. By contrast, the axial grinding force is stable in UVMG during the total grinding depth of at least 900 µm. The ultrasonic vibration in UVMG results in rough surface finish due to the material-removal mechanism of brittle fracture. However, by taking the advantages of better machining stability in UVMG and better surface roughness in CMG, extremely thin SiC sensor diaphragms with satisfactory surface quality can be achieved. Finally, we demonstrate the successful fabrication of a thin SiC diaphragm with a thickness of 20.3 µm.  相似文献   

7.
张立峰  王盛  王宁  张金  陈鑫灿  罗建辉 《塑料》2020,49(1):97-100
碳纤维增强塑料因具有优异的力学性能,在航空航天等领域有重要应用。通过单向碳纤维增强塑料(CFRP)的平面磨削实验,研究了塑料增强方向对CFRP磨削加工性能的影响。研究发现,单向塑料基复合材料磨削时,由于纤维增强塑料的各向异性,磨削力与加工表面粗糙度均呈现明显的规律性。其中,在加工参数砂轮转速为1500 r/min,进给速度为5 m/min和切削深度50μm的条件下,最大和最小磨削力分别为42和10 N,而且,磨削力符合规律:法向>纵向>横向。通过对磨削加工表面显微形貌的分析,揭示了塑料基复合材料磨削微观多向材料的去除机理。研究结果不仅对拓展CFRP的应用具有重要的经济意义,同时,能够为复合材料精密加工提供一定的理论和实验支撑。  相似文献   

8.
《Ceramics International》2023,49(6):9592-9606
Silicon carbide (SiC) ceramic is becoming widely used in multiple industrial applications, owing to its exceptional high-temperature properties. Yet it is still a challenge to machine SiC using traditional means without causing damage due to its high hardness and brittleness. In this study, a subtractive manufacturing technique based on the use of a fiber picosecond laser was employed to remove material from the reaction bonded SiC surface or create micro-patterns with the minimum damage to the surface, maximum surface quality and precision. Multiple laser processing parameters were investigated with the purpose of obtaining deep high-quality cuts with the minimum surface roughness and the minimum amount of the re-deposited material. The heat affected zone was analyzed by grazing angle X-ray diffractometry, cross-sectional scanning electron microscopy, energy dispersive and micro Raman spectroscopy techniques. The cut shape, depth, surface roughness as well as the kerf width and re-deposition height were assessed using a 3D laser scanning microscopy. The optimum values were established for the focal position, the laser power, linear speed, wobble frequency, wobble pattern, and number of passes. This study also identified the processing parameters for shallow and deep high-precision SiC cutting at a material removal rate of ~2 mm3/min. The work demonstrated that the developed laser machining process is an efficient subtractive manufacturing tool that can be integrated into the automated precision cutting systems for machining hard ceramic materials such as SiC and alumina.  相似文献   

9.
《Ceramics International》2022,48(12):17335-17342
When diamond wire saw is used in machining silicon nitride ceramics (Si3N4 ceramics), the ultra-hardness of Si3N4 causes the saw wire to wear out, which leads to the saw wire cutting performance constantly changing during its life cycle, and thus the machined quality of Si3N4 ceramics is affected. Surface roughness and topography are important indicators of the quality of the machined surface. In this paper, the diamond wire saw cutting experiment of Si3N4 ceramics was carried out, the effect of the evolution of saw wire cutting performance on the surface roughness and topography of Si3N4 ceramics as-sawn slices was investigated based on the analysis of the changes of saw wire wear topography, breaking force, bow angle and kerf loss during the sawing process. The results show that the surface roughness along the saw wire motion direction and the workpiece feed direction tends to decrease and then increase with the evolution of the cutting performance of the saw wire, which accords well with the trend of the as-sawn slices surface morphology. The results of the study can provide experimental reference for the development of high precision diamond wire saw cutting technology for Si3N4 ceramics.  相似文献   

10.
《Ceramics International》2020,46(4):4371-4380
Cf/SiC composite (carbon fiber reinforced silicon carbide ceramic matrix composites) is a kind of advanced composite material constituted by SiC as matrix and carbon fiber as reinforcing phase. Cf/SiC composites are being extensively used in the modern aerospace industry owing to their excellent physical and mechanical properties. The current work aims to investigate influences of clearance angle and point angle on drilling performance of 2D Cf/SiC composites using PCD (polycrystalline diamond) tools in terms of thrust force, drilling torque, hole surface quality, and material removal mechanism. PCD drill bits with different point angles and clearance angles were used in the experiment. The obtained results indicate that the 150° point angle is beneficial to improve the hole surface quality, and larger clearance angle is helpful to reduce the damage of exits. Additionally, the variation of clearance angle has little effect on the roughness of the machined surface. During the drilling process, the dominated material removal mechanisms are matrix removal, fiber breakage, and matrix-fiber debonding. The brittle fracture mode of carbon fibers, which directly affects surface roughness, can be divided into micro-brittle fractures in carbon fiber and macro-brittle fractures. Besides, the damage identification method of hole entrance and exit based on image processing technology is helping to improve the efficiency of machining quality evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号