首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this research, the nanocomposites, CoNi/SiO2 core-shell nanoparticles decorated reduced graphene oxide (RGO) nanosheets, are successfully synthesized via liquid-phase reduction reactions combined with a sol-gel route. The structures, morphologies, chemical composition and magnetic properties of CoNi nanoparticles, CoNi/SiO2 core-shell nanoparticles and RGO/CoNi/SiO2 nanocomposites have been investigated in exhaustive detail. The electromagnetic (EM) parameters of RGO/CoNi/SiO2 nanocomposites are measured using a vector network analyzer. The results reveal that the RGO/CoNi/SiO2 nanocomposites display enhanced EM wave absorption properties with the maximum reflection loss (RL) of ??46.3?dB at 6.2?GHz with a matching thickness of 4.2?mm. Additionally, the absorption bandwidth corresponding to the RL less than ??10?dB is up to 14.3?GHz (3.7–18.0?GHz) with a matching thickness range of 2.0–5.0?mm. To comprehensively consider the absorption bandwidth and the maximum RL, the integrational method which defines ΔS as the integration area of RL (RL < ??10?dB) and RE as EM wave absorption efficiency is adopted to reveal that the RGO/CoNi/SiO2 nanocomposites exhibit the excellent absorption properties with the matching thickness of only 2.0?mm. Accordingly, the as-prepared RGO/CoNi/SiO2 nanocomposites could be applied as promising EM wave absorption materials.  相似文献   

2.
In this study, coral cauliflower-like polypyrrole (PPy) hemispheres are synthesized on an alumina substrate via a simple chemical oxidative polymerization route. The stony coral-like morphology of PPy hemispheres acts as a conducting trap in absorbing electromagnetic (EM) radiation via multiple internal reflections. A PPy thin film deposited at 0.2 M pyrrole concentration shows a minimum reflection loss (RL) of −30.80 dB (99.9% microwave absorption) at the frequency of 14.2 GHz, and the highest total shielding effectiveness achieved is −18.3 dB at 16.8 GHz at 4.38 μm film thickness. The thin films exhibit excellent microwave absorption ability at low thicknesses, and the effective absorption bandwidth (RL < –10 dB) attains a high value of 2.2 GHz in the frequency range of 13–15.2 GHz. These findings can help researchers to enhance the EM wave absorption characteristics in a broad frequency region using lightweight intrinsically conducting polymers.  相似文献   

3.
The nickel-carbon nanofibers (Ni-C NFs) were fabricated by the electrospinning of poly(vinyl alcohol) (PVA) and nickel acetate tetrahydrate (NiAc) solution precursor with succedent PVA pyrolyzation and calcination process. The microwave absorption performance and electromagnetic (EM) parameters of the NFs were researched over the frequency range of 2.0–18.0?GHz. Both the impedance matching and EM wave absorption properties of the Ni-C NFs were improved by changing the carbonization temperature. The effect of graphitization degree on reflection loss (RL) and the possible loss mechanisms were directly displayed in the comparative study of each sample. The optimal RL value of ??44.9?dB and an effective frequency bandwidth of 3.0?GHz under a thickness of 3.0?mm can be reached by a sample calcined at 650?°C. These lightweight Ni-C NFs composites can be promising candidates for EM wave absorbers due to the combination of multiple loss mechanisms, nano-size effect and good impedance matching between Ni nanoparticles and CNFs.  相似文献   

4.
In recent years, porous or layered magnetic materials have received increasing attention due to their low density and lightweight. In this work, porous BiFeO3 microspheres and three-dimensional porous BiFeO3 microsphere-reduced graphene oxide (RGO) composite (3D porous BiFeO3/RGO) were prepared by one-step etching processing using pure BiFeO3 particles as precursors. The precursor undergoes dissolution-recrystallization/reduction process, resulting in large amount of BiFeO3 fragments and graphene hybrid product, which forms 3D porous BiFeO3/RGO composite. Electromagnetic (EM) absorption performance measurements exhibit that at low thickness of 1.8?mm, porous BiFeO3/RGO composite can achieve reflection loss (RL) value up to ?46.7?dB and absorption bandwidth (defined by RL <?10?dB) exceeding 4.7?GHz (from 12.0 to 16.7?GHz), testifying outstanding microwave absorbing performance. Compared with pure porous BiFeO3, improved EM wave absorption ability of as-prepared porous BiFeO3/RGO composite is attributed to interfacial polarization, multiple reflections, scattering, and appropriate impedance matching.  相似文献   

5.
C/ZnO composites with increased electromagnetic (EM) wave absorbing features have been synthesized through a simple one-pot hydrothermal process and subsequent high temperature carbonization under the protection of argon. The results depict that the maximum absorption of C/ZnO composites synthesized with the optimal molar ratio of zinc acetate to glucose is ?50.43?dB at 15.77?GHz. The 1.16-mm-thick coating shows a wide effective absorption bandwidth (3.52?GHz) of EM wave (RL≤?10?dB). The thin coating thickness of the C/ZnO composites is desirable for decreasing the absorber weight in EM wave absorption. And there are no other reagents used throughout the synthesis process except for the green glucose and zinc acetate. Thus, C/ZnO composites would be highly promising lightweight EM wave absorbing materials.  相似文献   

6.
The recent criteria to evaluate electromagnetic wave absorber include low density, strong absorbency, wide absorption bandwidth and thin absorber thickness, but its performance at low frequencies is always ignored. In this paper, the porous magnetic carbon nanofibers (P-CNF/Fe) for high-efficient electromagnetic wave absorption at low frequencies were fabricated by electrospinning followed by stabilization and carbonization. With the introduction of porous nanostructure, the permittivity of carbon nanofibers was decreased at low frequency and the impedance matching of permittivity and permeability was realized. The electromagnetic absorbing properties were investigated in detail. The minimum reflection coefficient reaches ?44.86?dB at 4.42?GHz, and the widest effective absorption bandwidth (EAB) in the frequency was 3.28 range from 12.96 to 16.24?GHz. Consequently, considering the EM wave absorption performance, P-CNF/Fe synthesized in this work can be a promising candidate in the field of EM wave attenuation.  相似文献   

7.
《Ceramics International》2019,45(10):13376-13384
Graphene nanoplatelets (GNPs) based materials are promising and low-cost absorbers. To develop new varieties of these absorbers, two kinds of GNPs/ZnO nanocomposites (GNPs/ZnO nanorod arrays and GNPs/ZnO nanoneedles) were synthesized in this paper, and the microwave absorption performance (MAP) together with the relevant mechanism were investigated based on the different microstructures, followed by the discussion of the growth mechanism of ZnO nanorod and nanoneedle. The result reveals that GNPs/ZnO nanorod arrays have strong reflection loss (RL) up to −44.8 dB, and effective attenuation bandwidth (RL˂-10 dB) of 4.65 GHz. While, GNPs/ZnO nanoneedles possess effective attenuation bandwidth of 6.7 GHz that covered entire X-band, and the superb RL was −15.3 dB. According to the detail analysis, we found that the pathways of attenuation EM wave are the same, and the differences between each other are responsible for the different intensity of interface polarization and multiple-scattering, due to the different microstructures.  相似文献   

8.
《Ceramics International》2019,45(13):16369-16379
With the rapid development of high power electromagnetic (EM) equipment and high-speed aircraft, the powerful and high oxidation-resistance absorbers are fundamentally desirable for the EM field. Herein, a novel high temperature anti-oxidative SiC/Fe3Si/CNTs composite is synthesized by a facile polymer derived ceramic (PDC) route from a Fe-containing polysilyacetylene (PSA). The microstructure of as-prepared SiC/Fe3Si/CNTs composite absorber is featured by micro-sized SiC ceramic grains with spherical Fe3Si nanoparticles and carbon nanotubes (CNTs) attached to. The vector network analyzer tests show a tunable wave-absorbing performance by adjusting the thickness of layer, and the effective bandwidth (the reflection loss < −10 dB) is 3.3–16.8 GHz for the sample S-1400 (heat treatment at 1400 °C in nitrogen flow). The minimal RL value is −41.2 dB at 10.5 GHz at a thickness of 2 mm and an effective bandwidth is nearly 4 GHz (12.9–16.9 GHz) at the thickness of only 1.5 mm. Moreover, after the oxidation treatment at 800 °C in the air, this absorber maintains the main structure and shows a good high temperature oxidation resistance. This absorber still remains excellent wave absorption property, in view of a minimal RL value of −40 dB at the thickness of 3 mm and a bandwidth of 4.8 GHz (10.4–15.2 GHz) at the thickness of 2.5 mm. The mechanism of high EM wave absorption performance is studied and attributed to the impendence matching, polarization, and the magnetic properties. Thus, the SiC/Fe3Si/CNTs composite is a promising EM absorber for high-temperature EM wave-absorbing applications.  相似文献   

9.
SiC nanowire/acrylic resin (SiCnw/ACR) composites with broadband electromagnetic (EM) absorption capabilities were fabricated by a novel procedure using 3D stereolithography (3D-SL) printing technology. The EM absorption abilities of the composites can be adjusted by tuning the SiCnw content and the thickness of the printing layer. When the SiCnw content is 3?wt% and the thickness of the printing layer is 25?μm–50?μm, the SiCnw/ACR composite has an optimally broad effective absorption bandwidth (EAB) and a high efficiency for EM absorption, whether assessing the C, X or Ku band, because of the high dielectric loss and proper impedance matching between the materials and free space. In the C band (4–8?GHz), the EAB reaches 2.9?GHz, and the reflection loss (RL) reaches ?34.1?dB; in the X band (8–12?GHz), the EAB reaches 4?GHz, which covers the entire X band, and the RL reaches ?34.5?dB; in the Ku band (12–18?GHz), the EAB exceeds 6?GHz, which covers the whole Ku band, and the RL reaches ?34.7?dB. This research is of great importance to the rapid preparation of parts, shells or devices with arbitrarily complex shapes and high efficiency broadband EM absorption abilities.  相似文献   

10.
Carbon black (CB) with contents of 5.5?wt% and 15?wt% filled quartz glass fiber reinforced polyimide (SiO2f/PI) composite were designed and prepared. A double-layer absorbing material was designed using the two composites materials as a matching layer and an absorption layer, respectively. The microwave absorption property of single-layer and double-layer composites is calculated according to transmission line theory. The results show that the microwave absorbing property of double-layer composite is better than that of single-layer at the same thickness. When the 5.5?wt%CB doped SiO2f/PI composite is used as the matching layer with a thickness of 0.7?mm and 15?wt%CB doped SiO2f/PI composite is used as the absorption layer with a thickness of 0.9?mm, the RL (reflection loss) of the composite reaches a minimum value of ?46.18?dB at 16.07?GHz. Meanwhile, the bandwidth of RL?≤??5?dB is 5.87?GHz and the bandwidth of RL?≤??10?dB is 3.95?GHz.  相似文献   

11.
The coming fifth generation mobile communication technology (5G) puts forward enormous requirements on millimeter wave (MMW) absorbing materials above 24 GHz. In the present work, elastic absorbing composites were fabricated with reduced graphene oxide (RGO) of different reduction time and nitrile rubber (NBR). A series of characterization methods were used to study the reduction degree and the structure of composites, the electromagnetic parameters of composites in 26.5–40 GHz were also measured and used to conduct an analytical computation of reflection loss (RL). It was found that, 3h-RGO/NBR presented the minimum RL of ?45 dB at 35.4 GHz while 7h-RGO/NBR exhibited the widest effective bandwidth (<-10 dB) about 6.5 GHz. In addition, the mechanical properties of composites were also improved by RGO. Therefore, the obtained RGO/NBR composites displayed promising prospect as elastic MMW absorbing materials for 5G applications.  相似文献   

12.
Excellent electromagnetic (EM) wave absorption agents that attenuate EM waves by mechanisms based on impedance matching, conductive loss and polarization loss instead of destructive interference are urgently needed but remain challenging. Here, an EM wave absorption agent with a tailorable heterogeneous interface is designed and prepared by the in situ growth of ZnO nanoparticles on the surface of mesoporous carbon hollow microspheres (PCHMs@ZnO) via hydrothermal synthesis followed by annealing. A controlled interface evolution associated with abundant heterogeneous interfaces plays a crucial role in optimized impedance matching and enhanced interfacial polarization loss. With this method, targeted EM wave absorption agents with an excellent absorption ability that is derived mainly from polarization loss and conductive loss rather than destructive interference are successfully obtained. When the PCHMs@ZnO annealed at 700°C were combined with paraffin, the effective absorption bandwidth of the resultant composites covers the whole X band, and the mean value of reflection loss (RL) reaches −12 dB, exceeding those of other reported ZnO-based materials. When the thickness of the composites varies from 3.3 to 4.3 mm, the value of the RL is lower than −8 dB in the whole X band. This work provides a promising model for preparing high-performance EM wave absorption agents.  相似文献   

13.
《Ceramics International》2019,45(16):19720-19729
Carbon-doped ZnCo2O4 (ZnCo2O4/C) yolk-shell microspheres are synthesized by a method of thermally decomposing precursor and then successfully compounded with magnetic graphene (MG) via co-precipitation in combination with a reduction pathway. The fabrication processes and characterizations (XRD, XPS, TEM, EDS and SEM) are described and explained in detail. It is confirmed that amorphous carbon (in situ decomposition from PVP) is uniformly doped into ZnCo2O4 yolk-shell microspheres. In addition, the reflection loss (RL) and electromagnetic (EM) wave absorption mechanisms of as-prepared ZnCo2O4/C/MG composites are calculated and analyzed exhaustively. The results show that absorption bandwidth with RL exceeding −10 dB reaches up to 4.48 GHz with a matching thickness of 3.5 mm while the maximum RL is up to −52.9 dB at 7.52 GHz with a matching thickness of 3.9 mm. Enhanced EM wave absorption performance can be attributed to good dielectric and magnetic loss, excellent impedance matching, diverse interfacial polarization and multiple reflections caused by special structures.  相似文献   

14.
Carbon-containing polymer-derived SiCN ceramics (PDCs-SiCN-C) were successfully fabricated with multi-layer graphene (MLG) and multiwalled carbon nanotubes (MWCNTs) as additives at 1100?°C. The effects of MLG and MWCNTs on the microwave absorption properties of PDCs-SiCN-C ceramics were analyzed. The imaginary permittivity and loss tangent of SiCN-MLG and SiCN-MWCNTs were about 3.4, 0.67 at 11.2?GHz and 3.1, 0.57 at 10.6?GHz, respectively. The minimum reflection loss of SiCN-MLG and SiCN-MWCNTs at 3?mm was ??54?dB and ??48?dB with the effective absorption bandwidth (RL ≤ ?10?dB, >90% absorption) about 1.5?GHz and 0.9?GHz in X-band.  相似文献   

15.
By using a catalytic growth procedure, carbon nanotubes (CNTs) are in situ formed on reduced graphene oxide (RGO) sheet at 600 °C. CNTs growing on RGO planes through covalent C–C bond possess lower interfacial contact electrical resistance. As a hybrid structure, the CNTs/graphene (CNT/G) are well dispersed into poly (dimethyl siloxane). The hybrid combining electrically lossy CNTs and RGO, which disperses in electrically insulating matrix, constructs an electromagnetic wave (EM) absorbing material with ternary hierarchical architecture. The interfacial polarization in heterogeneous interface plays an important role in absorbing EM power. When the filler loading is 5 wt.% and thickness of absorber is 2.75 mm, the minimum value of reflection coefficient and the corresponding frequency are −55 dB and 10.1 GHz, and the effective absorption bandwidth reaches 3.5 GHz. Therefore, combining the CNTs and graphene sheet into three-dimensional structures produces CNT/G hybrids that can be considered as an effective route to design light weight and high-performance EM absorbing material, while the effective EM absorption frequency can be designed.  相似文献   

16.
Thin thickness is always the pursuit of excellent electromagnetic wave absorbing materials. Herein, SiC nanowires with worm-like morphology were synthesized by microwave heating the mixture of expanded graphite and silica. The worm-like SiC nanowires exhibit an excellent microwave absorption ability at a thin thickness. With the filling ratio of SiC nanowires increases in the matrix, the dielectric loss and microwave absorbing ability are significantly enhanced; meanwhile the number of absorption peaks is gradually increased, and the absorption peaks also move toward a thinner thickness. When the nanowires filling ratio was 40?wt%, the minimum reflection loss reached down to ?35.2?dB and the effective absorption (RL?<??10?dB) bandwidth was 1.8?GHz?at a thickness of 1.3?mm. The possible growth mechanism of the worm-like SiC nanowires is that the intermediate reaction gas phases, SiO and CO, were confined in the relatively independent tiny pores of expanded graphite. This resulting in an excessive local gas phase pressure, which causes the nanowire growth direction changes randomly.  相似文献   

17.
《Ceramics International》2020,46(2):1560-1568
Investigating lightweight and high-efficiency electromagnetic wave (EM) absorbers is evolving as a desirable approach to solve the electromagnetic pollution. In this study, Mn3O4 hollow polyhedron wrapped by multiwalled carbon nanotubes (Mn3O4/MWCNTs) was successfully prepared by one-step hydrothermal treatment. Interestingly, the Mn3O4 polyhedron as a unique hollow structure can serve as a microwave receiver and the incident EM waves hardly escape in the intricate networks, which could be repetitiously attenuated and consumed. The Mn3O4/MWCNTs composite with a filler loading of 20 wt% exhibits most outstanding EM absorption performance over the whole frequency of 2–18 GHz. The optimal reflection loss (RL) achieves −53.8 dB at 11 GHz, and the effective absorption bandwidth (RL exceeding −10 dB) reaches 4.1 GHz (9.1–13.2 GHz) with a thickness of 2.5 mm. The effective absorption bandwidth (RL < −10 dB) up to 13.7 GHz (85% absorption over 2–18 GHz) was achieved by adjusting the thickness from 1.5 to 4 mm. The remarkable EM absorption performances benefit from the synergistic effects of suitable impedance matching, dielectric loss, interfacial polarizations and relaxation polarizations. These results indicate that Mn3O4/MWCNTs composite with lightweight and high-efficiency microwave absorption properties could serve as a prospective microwave absorber in practical applications.  相似文献   

18.
Developing light-weight, thin thickness and high-efficiency electromagnetic wave (EMW) absorbers is an effective strategy for dealing with the increasingly serious problem of electromagnetic radiation pollution. Herein, nickel/zinc oxide/carbon (Ni/ZnO/C) hollow microspheres decorated graphene composites were facilely prepared through the high-temperature pyrolysis of bimetallic NiZn metal-organic frameworks (MOFs) precursors. Morphological characterization results manifested that the Ni/ZnO/C microspheres with unique hollow structure were almost evenly anchored on the wrinkled surfaces of flake-like graphene. Moreover, the influences of additive amounts of graphene oxide (GO) in the MOFs precursors on the crystal structure, graphitization degree, micromorphology, magnetic properties, electromagnetic parameters and EMW absorption performance were investigated in detail. It was found that the superior EMW absorption performance could be achieved through facilely adjusting the additive amounts of GO in the precursors. As the additive amount of GO was equal to 60 mg, the obtained composite showed the comprehensive excellent EMW absorption performance. Notably, the optimal minimum reflection loss reached ?57.5 dB at 16.5 GHz in the Ku-band under an ultrathin matching thickness of merely 1.34 mm, and the broadest effective absorption bandwidth achieved 5.6 GHz (from 12.4 to 18 GHz) when the thickness was 1.5 mm. Furthermore, the underlying EMW absorption mechanisms of as-prepared composites were revealed. It was believed that our results could be valuable for the structural design and EMW absorption performance modulation for MOFs derived magnetic carbon composites.  相似文献   

19.
《Ceramics International》2016,42(6):7099-7106
BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8 GHz to 12 GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5 wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1 mm, the minimum reflection coefficient (RC) reaches −33 dB, and the effective absorption bandwidth is more than 3.1 GHz.  相似文献   

20.
The natural resonance appears at 16 GHz for (Fe, Ni)/C nanocapsules with (Fe, Ni) alloys as cores and graphite as shells. Reflection loss (RL) exceeding −10 dB was obtained in the whole Ku-band (12.4-18 GHz) for an absorber thickness of 2.0 mm, while it exceeds −20 dB over the 13.6-16.6 GHz range. In addition, the bandwidth does not change dramatically for the thicknesses of 1.87-2.1 mm for the RL values exceeding −10 dB. The (Fe, Ni)/C nanocapsules with wide bandwidth absorption can be used as excellent electromagnetic-wave-absorption materials in the whole Ku-band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号