首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multicolor tunable upconversion luminescence materials could be applied to polychromatic LED and anti-counterfeit due to their superiority in abundant color and security feature. However, the harsh terms to achieve emission tuning associated with the drawbacks, including changing the concentration or types of doping ions, higher temperature, and higher excitation power, limit the range of its application. In this paper, a convenient and versatile approach for multicolor-emitting is realized via simply lower power modulating in TiO2:Yb3+/ Er3+ and TiO2: Yb3+/Er3+/Tm3+. The emission color is tuned from pink to yellowish green in TiO2:Yb3+/ Er3+ and tuned from white to yellowish green in TiO2: Yb3+/Er3+/Tm3+. It's found that there is no apparent temperature variation at lower power. Meanwhile, the mechanism of the emission and the multicolor tunability is discussed.  相似文献   

2.
Self-assembled three-dimensional Yb3+(Ln = Er, Ho, Tm) co-doped Gd2O3 up-converted (UC) phosphors were synthesized by a facile co-precipitation method, and their morphologies and microstructures were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. Under the excitation at 980 nm, spectral pure three primary colors red, green and blue (RGB) emissions were respectively achieved in Yb3+/Er3+, Yb3+/Ho3+ and Yb3+/Tm3+ co-doped Gd2O3 phosphors, in which spectral color purities were tuned by adjusting the doping concentration, annealing temperature, excitation power density and the pulse-width of 980 nm laser. These results provide deeper insights into modulating spectral color purities of up-converted emission, and the potential applications of spectrally pure RGB up-converted materials in fingerprint recognition and multi-color printing were also investigated.  相似文献   

3.
The color-tunable up-conversion (UC) emission was observed in ZrO2:Yb3+, Er3+ thin films synthesized on fused silica substrates using a chemical solution deposition method. The crystal structure, surface morphology image and optical transmittance of ZrO2:Yb3+, Er3+ thin films were detected in the matter of Yb3+/Er3+ doping content. Under excitation by 980?nm infrared light, intense UC emission can be obtained from ZrO2:Yb3+, Er3+ thin films. Photoluminescence study shows that there are two emission bands centered at 548?nm and 660?nm in the UC luminescence spectra, which can be owing to (2H11/2,4S3/2)→4I15/2 and 4F9/24I15/2 transitions of Er3+ ions, respectively. In addition, the color coordinate of UC emission between green-red can be tuned by properly adjusting the dopant concentration, because the composition of Yb3+/Er3+ affect the red/green ratio via the process of cross relaxation and energy back transfer. Our study suggests that ZrO2:Yb3+, Er3+ thin films can be considered as promising materials for new photoluminescence devices.  相似文献   

4.
Yb3+/Er3+codoped La10W22O81 (LWO) nanophosphor rods have been successfully synthesized by a facile hydrothermal assisted solid state reaction method, and their upconversion photoluminescence properties were systematically studied. X-ray diffraction patterns revealed that the nanophosphors have an orthorhombic structure with space group Pbcn (60). A microflowers-like morphology with irregular hexagonal nanorods was observed using field emission scanning electron microscopy for the Yb3+(2 mol%)/Er3+(2 mol%):LWO nanophosphor. The shape and size of the nanophosphor and the elements along with their ionic states in the material were confirmed by TEM and XPS studies, respectively. A green upconversion emission was observed in the Er3+: LWO nanophosphors under 980 nm laser excitation. A significant improvement in upconversion emission has been observed in the Er3+: LWO nanophosphors by increasing the Er3+ ion concentration. A decrease in the upconversion emission occurred due to concentration quenching when the doping concentration of Er3+ ions was greater than 2 mol%. An optimized Er3+(2 mol%): LWO nanophosphor exhibited a strong near infrared emission at 1.53 μm by 980 nm excitation. The green upconversion emission of Er3+(2 mol%): LWO was remarkably enhanced by co-doping with Yb3+ ions under 980 nm excitation because of energy transfer from Yb3+ to Er3+. The naked eye observed this upconversion emission when co-doping with 2 mol% Yb3+. In order to obtain the high upconversion green emission, the optimized sensitizer concentration of Yb3+ ions was found to be 2 mol%. The upconversion emission trends were studied as a function of stimulating laser power for an optimized sample. Moreover, the NIR emission intensity has also been enhanced by co-doping with Yb3+ ions due to energy transfer from Yb3+ to Er3+. The energy transfer dynamics were systematically elucidated by energy level scheme. Colorimetric coordinates were determined for Er3+ and Yb3+/Er3+: LWO nanophosphors. The energy transfer mechanism was well explained and substantiated by several fluorescence dynamics of upconversion emission spectra and CIE coordinates. The results demonstrated that the co-doped Yb3+(2 mol%)/Er3+(2 mol%): LWO nanophosphor material is found to be a suitable candidate for the novel upconversion photonic devices.  相似文献   

5.
Color-tunable up-conversion powder phosphors Zn(AlxGa1-x)2O4: Yb3+,Tm3+,Er3+ were synthesized via high temperature solid-state reaction. Also, the morphological and structural characterization, up-conversion luminescent properties were all investigated in this paper. In brief, under the excitation of a 980?nm laser, all powders have same emission peaks containing blue emission at 477?nm (attributed to 1G43H6 transition of Tm3+ ions), green emission at 526?nm and 549?nm (attributed to 2H11/24I15/2 and 4S3/24I15/2 transition of Er3+ ions respectively), red emission at about 659?nm and 694?nm (attributed to 4F9/24I15/2 transition of Er3+ ions and 3F33H6 transition of Tm3+ ions, respectively), which are not changed after the doping of Al3+ ions. However, the doping of Al3+ ions can enhance the up-conversion luminescent intensity and efficiency, while the emission color of as-prepared powder phosphors can be tunable by controlling the doping amount of Al3+ ions. Taking Zn(Al0.5Ga0.5)2O4:Yb,Tm,Er as the cut-off value, the emissions have clear blue-shift firstly and then show obvious red-shift with the increasing doping of Al3+ ions. Stated thus, pink emission in ZnAl2O4:Yb,Tm,Er, purplish pink emission in ZnGa2O4:Yb,Tm,Er and Zn(Al0.9Ga0.1)2O4:Yb,Tm,Er, purple emission in Zn(Al0.1Ga0.9)2O4:Yb,Tm,Er and Zn(Al0.3Ga0.7)2O4:Yb,Tm,Er, purplish blue emission in Zn(Al0.7Ga0.3)2O4:Yb,Tm,Er, blue emission in Zn(Al0.5Ga0.5)2O4:Yb,Tm,Er can be observed, which confirm the potential applications of as-prepared Zn(AlxGa1-x)2O4:Yb3+,Tm3+,Er3+ powder phosphors in luminous paint, infrared detection and so on.  相似文献   

6.
《Ceramics International》2017,43(14):10881-10888
A series of co-doped (Yb3+/Er3+): Li2O-LiF-B2O3-ZnO glasses were prepared by standard melt quenching technique. Structural and morphological studies were carried out by XRD and FESEM. Phonon energy dynamics have been clearly elucidated by Laser Raman analysis. The pertinent absorption bands were observed in optical absorption spectra of singly doped and co-doped Yb3+/Er3+: LBZ glasses. We have been observed a strong up-conversion red emission pertaining to Er3+ ions at 1.0 mol% under the excitation of 980 nm. However, the up-conversion and down conversion (1.53 µm) emission intensities were remarkably enhanced with the addition of Yb3+ ions to Er3+: LBZ glasses due to energy transfer from Yb3+ to Er3+. Up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses exhibits three strong emissions at 480 nm, 541 nm and 610 nm which are assigned with corresponding electronic transitions of 2H9/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively. Consequently, the green to red ratio values (G/R) also supports the strong up-conversion emission. The Commission International de E′clairage coordinates and correlated color temperatures (CCT) were calculated from their up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses. The obtained chromaticity coordinates for optimized glass (0.332, 0.337) with CCT value at 5520 K are very close to the standard white colorimetric point in cool white region. These results could be suggested that the obtained co-doped (Yb3+/Er3+): LBZ glasses are promising candidates for w-LEDs applications.  相似文献   

7.
In this paper, we study the influence of Cr3+ on yellowish-green upconversion (UC) emission and the energy transfer (ET) of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 (SZNL) zinc silicate glasses under excitation of the 980 nm laser diode (LD). The influence of Cr3+ on enhancing the red UC emission of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 zinc silicate glasses under the excitation of 980nm LD was also investigated. The ET processes between Yb3+, Cr3+, and Er3+, together with the combination of Yb3+-Cr3+-Er3+, which led to the green UC emission intensity of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 zinc silicate glasses bands centered at ~546 nm have been significantly enhanced. By increasing the concentration of Cr3+ from 0 up to 5 mol.%, we can locate the Commission Internationale de l'éclairage (CIE) 1931 (x; y) chromaticity coordinates for UC emissions of Er3+/Cr3+/Yb3+ tri-doped in the central position of the yellowish-green color region of CIE 1931 chromaticity diagram. Besides, the ET processes between the Yb3+, Cr3+, and Er3+ are also proposed and discussed.  相似文献   

8.
《Ceramics International》2022,48(10):14091-14097
Particle size is a critical parameter in up-conversion luminescence tuning and application research. In this study, CeO2:Yb3+/Er3+ nanospheres were synthesized via coprecipitation. The average size of these nanospheres gradually decreased as the Yb3+ doping concentration increased, which might be attributed to the influence of Yb3+ doping on the growth rate of nanospheres by surface charge repulsion. Upon exciting these nanospheres using a 980-nm laser, the corresponding up-conversion red-green emission intensity ratio gradually increased as the Yb3+ doping concentration increased, which might be ascribed to two reasons: the strengthened 4S3/2 → 4F9/2 nonradiative relaxation process and the enhanced Er3+ → Yb3+ energy back-transfer process. To assess the influence of the nonradiative relaxation process on the up-conversion emission red-green ratios, the down-conversion emission spectra and decay curves of CeO2:x%Yb3+/2%Er3+ nanospheres that were excited by a 520 nm laser were investigated. To validate how the particle size affects the up-conversion emission, CeO2:x%Lu3+/2%Yb3+/2%Er3+ nanospheres of various sizes were synthesized by substituting optically active Yb3+ using optically inert Lu3+. The corresponding up-conversion emission spectra and decay curves were investigated. The experimental results enhanced our understanding of how lanthanide doping affects the up-conversion luminescence tuning of Er3+, offering great potential to regulate the morphology and optical properties of the up-conversion luminescence nanoparticles.  相似文献   

9.
In this work, we prepared CaSr1-xAl2SiO7:xCe3+ (0.03 ≤ x ≤ 0.12) and CaSr0.94Al2SiO7:0.03Ce3+,0.03 M+ (M+ = Li+ and Na+) phosphors via solid-state reaction method. Structural and photoluminescence (PL) properties of the phosphors were also investigated. The prepared phosphors formed an orthorhombic crystal structure with the P212121 space group. CaSr1-xAl2SiO7:xCe3+ phosphors were effectively excited by near-ultraviolet (UV) light (345 nm), which is suitable with the emission of near-UV light emitting diode chips. A broad blue emission (402 nm) was detected in CaSr1-xAl2SiO7:xCe3+ and CaSr0.94Al2SiO7:0.03Ce3+,0.03 M+ phosphors; this was attributed to the 4f05d1 → 4f1 transition of Ce3+. To maintain charge equilibrium, charge compensators, such as monovalent Li+ and Na+ ions, were doped into the CaSr0.97Al2SiO7:0.03Ce3+ phosphor, significantly improving its PL properties. The strongest emission intensity was achieved in CaSr0.94Al2SiO7:0.03Ce3+,0.03Li+ phosphor. Addition of Li+ charge compensator was highly effective in improving PL properties of CaSr0.97Al2SiO7:0.03Ce3+ phosphors.  相似文献   

10.
Li+-ion codoped NaYF4: Er3+/Yb3+ phosphors (β-NaYF4) with a hexagonal structure were synthesized via a modified solid-state route. High-speed planetary ball milling and solid-liquid mixing were simultaneously used to overcome the drawbacks of high synthesis temperatures in conventional routes. A pure β-NaYF4 phase was obtained through calcination at 600?°C for 3?h. Increases in the codoping content of Li+ ion caused a slight shift in X-ray diffraction peak positions toward high angles owing to the distortion of the local crystal field. Field emission scanning electron microscope images showed agglomerated spherical particles of approximately 0.7?µm with narrow size distribution. The upconversion properties of β-NaYF4 codoped with Li+-ion were explored. Two emission bands in the green regions (520?nm and 545?nm) and one emission band in the red region (615?nm) were observed owing to the 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2 transitions of Er3+, respectively. Codoping with 6?mol% Li+ increased the upconversion intensity by three times, which was explained using the energy level diagram. The present phosphors with improved upconversion properties were utilized for latent fingerprint detection on smooth surfaces of regularly used polymer sheets, glass substrates, and compact discs. Using the present phosphors, the base elements with three-level features, such as sharp ridges, valleys, ridge flow, bifurcation, ridge shapes, and dots, were observed on all hydrophilic and hydrophobic surfaces. The prepared phosphors exhibited promising characteristics to detect the features of fingerprint impression for individual identification in forensic applications.  相似文献   

11.
《Ceramics International》2017,43(12):8879-8885
The present paper focuses on near infrared (NIR) down-conversion photoluminescence (PL) properties by studying the energy transfer mechanism between Er3+ and Yb3+ in CaMoO4:Er3+, Yb3+ phosphors. We have successfully synthesized a series of Er3+ doped and Yb3+ codoped CaMoO4 phosphors by hydrothermal method. The down-conversion of Er3+-Yb3+ combination with CaMoO4 phosphor is designed to overcome the energy losses due to spectral mismatch when a high energy photon is incident on the Si-solar cell. The XRD, FESEM, EDX, PL, UV–Vis, Lifetime measurements were carried out to characterize the prepared down-converting phosphors. The crystallinity and surface morphology were studied by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The down-conversion PL spectra have been studied using 380 nm excitation wavelength. The Er3+ doped phosphors exhibit hypersensitive emission at 555 nm in the visible region due to 4S3/24I15/2 transition. The addition of Yb3+ into Er3+ doped CaMoO4 attribute an emission at 980 nm due to 2F5/22F7/2 transition. The decrease in emission intensity in visible region and increase in NIR region reveals the energy transfer from Er3+ to Yb3+ through cross relaxation. The UV–Vis–NIR spectra shows the strong absorption peak around 1000 nm due to Yb3+ ion. The lifetime measurement also reveals the energy transfer from Er3+ to Yb3+ ions. The maximum value of energy transfer efficiency (ETE) and corresponding theoretical internal quantum efficiency are estimated as 74% and 174% respectively.  相似文献   

12.
Novel double-perovskite K(Y0.95-xLuxEu0.05)CaWO6 red phosphors were successfully prepared by the controllable citrate-EDTA complexing method. XRD with structure refinement, FTIR, Raman and photoluminescence spectra were combined to systematically investigate the structure parameters and luminescence properties of prepared phosphors. The substitution of Lu3+ with smaller ionic radius resulted in the lower symmetry even with the same space group of C2/m, which was also directly observed from the red shift and splitting of Raman T2?g(1) mode. The concentration higher than x?=?0.6 made the intensity alteration in the excitation spectra from charge transfer band to 4f?4f of Eu3+. The obvious enhancements of red emission at 615?nm were obtained under both blue and ultraviolet lights, respectively, and reached almost the same intensity at x?=?0.6. Meanwhile, the more standard red light could be found by the gradual shifts of CIE chromaticity coordinates and bigger ratio of red/orange emission. The substitution of Lu3+ improved the quality and emission intensity of red light of this double perovskite system and the composition optimized phosphor of K(Y0.35Lu0.6Eu0.05)CaWO6 exhibited great potential in the application of white LEDs.  相似文献   

13.
In this research, the optical properties of Er3+/Yb3+ co-doped phosphate glass have been studied to explore the potential of this glass system in laser and electronic amplifiers. The Judd–Ofelt (J-O) intensity parameter (Ωt) in the J-O model was established to determine the absorption intensity of the glass. The optical properties of the glass can be evaluated by various radiation parameters such as the radiative transition probabilities (Arad), stimulated emission cross sections (σe), branching ratios (βJJ'), maximum half-width values (Δλp), and the radiation lifetime (τrad) of the glass. It was found that in the case of Yb3+ as a sensitizer, the spectral properties of the Er3+ doped glass can be maximized. The data of Arad, βJJ', τrad, σe and Δλp obtained by Er3+/Yb3+ co-doping can find that the Er3+-doped sample undergoes 4I13/24I15/2 transition at 1.56?µm, and the stimulated emission cross section is greatly improved. The application prospects of the glass in solid near-infrared laser and electronic communication was discussed. According to the comprehensive discussion and analysis, the glass has great application potential.  相似文献   

14.
《Ceramics International》2019,45(14):16911-16917
This work presents the structural, morphological and luminescent, properties of SrGe4O9 (SGO):Er3+,Yb3+ phosphors. These phosphors were synthesized by simple combustion synthesis and subsequently annealed at 1100 °C. The XRD patterns revealed that all the SGO samples doped with Yb3+ concentrations from 2 to 10 at.% presented a trigonal pure phase (the Er3+ concentration was fixed to 1 at.%). The morphology of the SGO samples was analyzed by scanning electron microscopy and found that they are formed by microparticles with irregular shapes and average sizes in the range of 0.2 μm–3 μm. The luminescence measurements of the SGO:Er3+,Yb3+ samples showed the presence of two main emission bands at 551 nm (green) and at 662 nm (red) under excitation at 980 nm, which are associated to Er3+ transitions. For Yb concentration of 2 and 3 at.% the green band dominated, but the red band became more intense for Yb concentrations above 5 at.%. As result, the CIE coordinate changed from the green to the yellow region. The increase for the Yb content from 2 to 10 at.% also enhanced of the NIR emission of Er3+ ≈5 times and the maximum upconversion emission was observed for 8% of Yb concentration. Further, the surface of the SGO samples was analyzed by the FTIR technique in order to find OH groups which are common luminescent quenching centers, but these groups were not detected on the samples. Since the SGO samples presented tunable emission, absence of OH groups on their surface and stable crystalline structure for high Yb dopant concentrations, they could be good candidates as phosphors for solid state lighting or displays applications.  相似文献   

15.
Lu3+/Yb3+ and Lu3+/Er3+ co-doped Sb2Se3 nanomaterials were synthesized by co-reduction method in hydrothermal condition. Powder X-ray diffraction patterns indicate that the LnxLnxSb2−2xSe3 Ln: Lu3+/Yb3+ and Lu3+/Er3+ crystals (x = 0.00 − 0.04) are isostructural with Sb2Se3. The cell parameters were increased for compounds upon increasing the dopant content (x). Scanning electron microscopy and transmission electron microscopy images show that co-doping of Lu3+/Yb3+ ions in the lattice of Sb2Se3 produces nanorods, while that in Lu3+/Er3+ produces nanoparticles, respectively. The electrical conductivity of co-doped Sb2Se3 is higher than that of the pure Sb2Se3 and increases with temperature. By increasing the concentration of Ln3+ions, the absorption spectrum of Sb2Se3 shows red shifts and some intensity changes. In addition to the characteristic red emission peaks of Sb2Se3, emission spectra of co-doped materials show other emission bands originating from f-f transitions of the Yb3+ ions.  相似文献   

16.
Uniform spindle-like micro-rods NaLa(WO4)2:Yb3+,Er3+ phosphors are prepared by the solvothermal method in the text. Controllable morphology of NaLa(WO4)2 crystal can be obtained by adjusting the prepared temperature, PH value, complexing agent content, and solvent ratio. Uniform NaLa(WO4)2:Yb3+,Er3+ micro-rods of 1.8 μm in length and 0.5 μm in width are synthesized at a low temperature of 120°C. The prepared NaLa(WO4)2:Yb3+,Er3+ phosphors present green upconversion luminescence under 980 nm excitation, luminescence intensity reaches to maximum at the Yb3+ and Er3+ concentration of 6 and 2 mol%. The temperature performance of the NaLa(WO4)2:Yb3+,Er3+ phosphors are evaluated based on thermal coupling technology. Temperature dependence of the two green emissions ratio of Er3+ ion is obtained, and the sensitivity of the sample can be calculated, the maximum sensitivity of NaLa(WO4)2:Yb3+,Er3+ is up to 0.019 K−1 at the sample temperature of 564 K.  相似文献   

17.
A single-phase and optimized pure white light emitting Dy3+-doped and Dy3+/Mn2+ codoped Na3Y(PO4)2 phosphors (NYPO) were synthesized by traditional solid state reaction process. The as-synthesized phosphors were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectra and photoluminescence studies. The results suggested that the NYPO: Dy, Mn phosphors were crystallized in orthorhombic structures. The presence of dopants Dy and Mn was quantified by XPS analysis. All of the phosphors were effectively excited using a light of wavelength 351?nm and emissions in two regions, blue (~482?nm, 4F9/26H15/2) and yellow (~573?nm, 4F9/26H13/2), were obtained due to the f-f transitions of Dy3+ ions. The maximum intensities of Dy and Mn obtained were 0.07 and 0.05 for NYPO:Dy and NYPO:0.07Dy, Mn, respectively. The chromaticity coordinates, color temperatures, and color rendering indices of NYPO: 0.07Dy ((0.32, 0.33), 6194?K, and 48) and NYPO:0.07Dy, 0.05Mn phosphors ((0.33, 0.33), 5688?K, and 62) were determined. The energy transfer mechanism and oxygen vacancies that arise due to the introduction of Mn2+ ions in the NYPO:Dy phosphors, are responsible for the tuning of cool white light to pure day white light. The introduction of Mn in the Dy doped NYPO phosphor enhances the emission intensity in the phosphor.  相似文献   

18.
Pr3+ ion-doped YinGe2O7 phosphors are synthesized by a vibrating milled solid state reaction. There is a red shift for the excitation peak for the charge transfer transition between In3+ and O2- ion because the numbers of oxygen vacancies change the structure, which leads to a change in the crystal field. The results indicate that the emission spectra for the YinGe2O7:Pr samples under an excitation of 263 nm exhibit two dominant peaks at 486 and 604 nm, which are respectively assigned to the 3P03H4 and 1D23H4 transitions. The chromaticity coordinate for (Y1?xPrx)InGe2O7 phosphors varies with the Pr3+ doping concentration, from white, to greenish, to blueish. This has a potential application as a white light emitting phosphor for ultraviolet light-emitting diodes.  相似文献   

19.
Eu3+-activated BaLaMgNbO6 red-emitting phosphors were synthesized by a high-temperature solid-state reaction method. Phase analysis and luminescence were characterized by X-ray diffraction (XRD) and photoluminescence excitation and emission spectra. The XRD patterns showed that BaLaMgNbO6 had a monoclinic structure with space group P21/n. The excitation spectra consisted of a broad charge-transfer band and some sharp f-f absorption peaks characteristic of Eu3+. The intensity ratio of I615/I590 was used to detect the chemical environment of Eu3+. The chromaticity coordinates of BaLa0.7Eu0.3MgNbO6 were (0.67, 0.33), indicating that the BaLaMgNbO6:Eu3+ phosphors were excellent red-emitting phosphors. Under excitation by near-ultraviolet (UV) and blue light, the phosphor not only exhibited intense red emission but also showed high color quality. The Ozawa and Dexter energy-transfer theories were employed to calculate the theoretical quenching concentration and determine the concentration quenching mechanism. In addition, the activation energy of BaLa0.7Eu0.3MgNbO6 was calculated through the Arrhenius equation. A configurational coordinate diagram was used to explain the thermal quenching mechanism.  相似文献   

20.
《Ceramics International》2023,49(13):21932-21940
Due to the non-contact and high sensitivity, optical thermometry based on rare earth doped phosphors has been paid much attention to. Herein, dual-mode optical thermometers are designed using up-conversion luminescence of Er3+/Ho3+-Yb3+ doped LaNbO4 phosphors, which were synthesized for the first time by high-temperature solid-state reaction method. The LaNbO4:1Er3+:10Yb3+ and LaNbO4:1Ho3+:10Yb3+ phosphors exhibit reliable and excellent thermometric performance by combining fluorescence intensity ratio and decay lifetime for self-calibration. Specifically, the maximal relative sensitivities based on fluorescence lifetime were 0.27 %K−1 and 0.33 %K−1 for LaNbO4:1Er3+:10Yb3+ and LaNbO4:1Ho3+:10Yb3+ phosphors, respectively. The maximal relative sensitivity is 1.12 %K−1 when using intensity ratio between thermal coupling energy levels in LaNbO4:1Er3+:10Yb3+ as a detecting signal. Furthermore, the maximal relative sensitivity reaches as high as 0.98 %K−1 when taking advantage of special non-thermal coupling energy levels in LaNbO4:1Ho3+:10Yb3+. These results indicate that Er3+/Ho3+-Yb3+ doped LaNbO4 phosphors possess great potential in self-calibrated optical thermometric techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号