首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effects of Yb3+ doping on phase structure, thermal conductivity and fracture toughness of bulk Nd2Zr2O7, a series of (Nd1-xYbx)2Zr2O7 (x?=?0, 0.2, 0.4, 0.6, 0.8, 1.0) ceramics were synthesized using a solid-state reaction sintering method at 1600?°C for 10?h. The phase structures were sensitive to the Yb3+ content. With increasing doping concentration, a pyrochlore-fluorite transformation of (Nd1-xYbx)2Zr2O7 ceramics occurred. Meanwhile, the ordering degree of crystal structure decreased. The substitution mechanism of Yb3+ doping was confirmed by analyzing the lattice parameter variation and chemical bond of bulk ceramics. The thermal conductivities of (Nd1-xYbx)2Zr2O7 ceramics decreased first and then increased with the increase of Yb3+ content. The lowest thermal conductivity of approximately 1.2?W?m?1 K?1 at 800?°C was attained at x?=?0.4, around 20% lower than that of pure Nd2Zr2O7. Besides, the fracture toughness reached a maximum value of ~1.59?MPa?m1/2 at x?=?0.8 but decreased with further increasing Yb3+ doping concentration. The mechanism for the change of fracture toughness was discussed to result from the lattice distortion and structure disorder caused by Yb3+ doping.  相似文献   

2.
Concerning the safety problems of conventional Li-ion batteries with liquid electrolytes, it is crucial to develop reliable solid-state electrolytes with high ionic conductivity. Li1+xAlxTi2?x(PO4)3 (LATP, x = 0.3) is regarded as one of the most promising solid electrolytes due to its high ionic conductivity and excellent chemical stability to humidity.Herein, a new strategy is proposed for improving the sintering behavior and enhancing the ionic conductivity of LATP by using LiBO2 as the sintering aid via liquid phase sintering. The as-prepared sample LATP with homogeneous microstructure and high relative density of 97.1% was successfully synthesized, yielding high total ionic conductivity of 3.5 × 10?4 S cm?1 and low activation energy of 0.39 eV at room temperature. It was found that the addition of LiBO2 could effectively enhance the densification and increase the ionic conductivity of LATP electrolyte, proving an effective way to synthesis LATP ceramics by a simple and reliable route.  相似文献   

3.
Li3/8Sr7/16-3x/2LaxZr1/4Nb3/4O3 (x = 0, 0.05, 0.10, 0.15, 0.20) were synthesized using the conventional solid-state reaction method. In order to increase the vacancy concentration, La3+ was doped on the Sr2+ site. Crystal structures of doped samples were characterized by X-ray diffraction. Except, perovskite-type Li3/8Sr7/16-3x/2LaxZr1/4Nb3/4O3 (x = 0, 0.05, 0.10, 0.15) samples were fabricated by heat treatment at 1250 °C, 1275 °C, 1275 °C and 1275 °C, respectively, for 15 h. Lattice sizes decreased with the increase of doping amounts because of the smaller ion radius of La3+ compared to that of Sr2+. Ionic conductivities of the samples were measured by AC impedance spectroscopy. The results showed that the ionic conductivity increases at first and then decreases with raising doping amounts and sintering temperatures. So the optimized composition Li3/8Sr7/16-3x/2LaxZr1/4Nb3/4O3 (x = 0.05) sintered at 1275 °C was selected with the highest total conductivity of 3.33 × 10?5 S cm?1at 30 °C and an activation energy of 0.27 eV. Additionally, potentiostatic polarization test was used to evaluate the electronic conductivity. The optimal composition Li3/8Sr7/16-3x/2LaxZr1/4Nb3/4O3 (x = 0.05) as a possible Li-ion conducting solid electrolyte has an electronic conductivity of only 8.39 × 10?9 S cm?1.  相似文献   

4.
Co-doped Li3V2−xCox(PO4)3/C (x = 0.00, 0.03, 0.05, 0.10, 0.13 or 0.15) compounds were prepared via a solid-state reaction. The Rietveld refinement results indicated that single-phase Li3V2−xCox(PO4)3/C (0 ≤ x ≤ 0.15) with a monoclinic structure was obtained. The X-ray photoelectron spectroscopy (XPS) analysis revealed that the cobalt is present in the +2 oxidation state in Li3V2−xCox(PO4)3. XPS studies also revealed that V4+ and V3+ ions were present in the Co2+-doped system. The initial specific capacity decreased as the Co-doping content increased, increasing monotonically with Co content for x > 0.10. Differential capacity curves of Li3V2−xCox(PO4)3/C compounds showed that the voltage peaks associated with the extraction of three Li+ ions shifted to higher voltages with an increase in Co content, and when the Co2+-doping content reached 0.15, the peak positions returned to those of the unsubstituted Li3V2(PO4)3 phase. For the Li3V1.85Co0.15(PO4)3/C compound, the initial capacity was 163.3 mAh/g (109.4% of the initial capacity of the undoped Li3V2(PO4)3) and 73.4% capacity retention was observed after 50 cycles at a 0.1 C charge/discharge rate. The doping of Co2+into V sites should be favorable for the structural stability of Li3V2−xCox(PO4)3/C compounds and so moderate the volume changes (expansion/contraction) seen during the reversible Li+ extraction/insertion, thus resulting in the improvement of cell cycling ability.  相似文献   

5.
In this paper, NaTi2-xSnx(PO4)3/C (x?=?0.0, 0.2, 0.3, and 0.4) composites were fabricated via facile sol-gel method, and employed as anodes for aqueous lithium ion batteries. Effect of Sn doping with various content on electrochemical properties of NaTi2(PO4)3/C was investigated systematically. Sn doping on Ti site has no obvious effect on the lattice structure and morphology of NaTi2(PO4)3/C. Among all samples, NaTi1.7Sn0.3(PO4)3/C (NC-Sn-3) demonstrates the best electrochemical properties. NC-Sn-3 exhibits the outstanding rate performance, delivering a discharge capacity of 103.3, 95.2, and 87.4?mAh?g?1 at 0.5, 7, and 20?°C, respectively, 1.7, 30.5, and 56.2?mAh?g?1 larger than those of pristine NaTi2(PO4)3/C. In addition, NC-Sn-3 shows excellent cycling performance with the capacity retention of 80.6% after 1000 cycles at 5?°C. This work reveals that Sn doped NaTi2(PO4)3/C with outstanding electrochemical properties are potential anode for aqueous lithium ion batteries.  相似文献   

6.
Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8, 0.7) ceramics were prepared by solid state reaction sintering. The sintered Sr1.0(Zr0.9Y0.05Yb0.05)O2.95 is a single-phase solid solution while the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9?0.7) are composites, and a significant grain growth inhibition is observed in the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9). Rare-earth elements distribution in the bulk materials indicates that Yb and Y preferentially substitute Zr-sites in SrZrO3, and the highest solubility of RE2O3 in pure SrZrO3 is ~0.8 mol%. The sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x have high thermal expansion coefficients up to ~11.0×10?6 K-1 (1200°C). Sr0.8(Zr0.9Y0.05Yb0.05)O2.75 has the lowest thermal conductivity of 1.38 W·m-1·K-1 at 800°C. Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) show no phase transition from 600 to 1400°C, whereas Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9, 0.8) have excellent high-temperature phase stability over the whole investigated temperature range. Therefore, Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) are considered as promising TBCs materials that might be operated at higher temperatures compared to YSZ.  相似文献   

7.
In this work, BaCe0.6Zr0.2Y0.2-xYbxO3-δ and BaCe0.6Zr0.2Gd0.2-xYbxO3-δ (x?=?0–0.20), proton conducting materials are prepared by the freeze-drying precursor method. The sintering conditions were optimized by adding Zn(NO3)2·6H2O as sintering additive. The materials are thoroughly characterized by different structural and microstructural techniques, including X-ray diffraction, scanning and transmission electron microscopy, and thermogravimetric-differential thermal analysis. The addition of Zn favours the phase formation and densification at lower sintering temperatures; however, it leads to the segregation of a Zn-rich secondary phase, with general formula BaLn2ZnO5 (Ln?Y, Gd and Yb), which is identified and quantified for the first time. All samples with Zn as sintering aid exhibit cubic structure; however, the samples without Zn crystallize with orthorhombic or cubic structure, depending on the composition and thermal treatment. The electrical properties are studied by impedance spectroscopy. A deep analysis of the bulk and grain boundary contributions to the conductivity has revealed that the bulk conductivity remains almost unchanged along both series over Yb-doping; however, the grain boundary resistance decreases. The highest conductivity values are found for the intermediate members of both series, BaCe0.6Zr0.2Y0.1Yb0.1O3-δ and BaCe0.6Zr0.2Gd0.1Yb1O3-δ, with 33 and 28?mS?cm?1 at 750?°C, respectively.  相似文献   

8.
(Y0.87-xLa0.1Zr0.03Ybx)2O3 (x?=?0.02, 0.04, 0.05) transparent ceramics were obtained by solid-state reaction and combined sintering procedures with La2O3 and ZrO2 as sintering additives. A method based on two-step intermediate sintering in air followed by vacuum sintering was applied in order to control the densification and grain growth of the samples during the final sintering process. The results indicate that La2O3 and ZrO2 co-additives can improve the microstructure and optical properties of Yb:Y2O3 ceramics at relatively low sintering temperature. On the other hand, the addition of Zr4+ ions leads to the formation of dispersed scattering volumes in the ceramic bodies. Transmittance of 78.8% was measured for the 2.0?at% Yb:Y2O3 ceramic sample at the wavelength of 1100?nm. The spectroscopic properties of Yb:Y2O3 ceramics were investigated at room temperature. The obtained results show that the absorption cross-section at 978?nm is in the range of 2.08?×?10–20 to 2.36?×?10–20 cm2, whereas the emission cross-section at 1032?nm is ~1.0?×?10–20 cm2.  相似文献   

9.
In this study, silicon and its effect on the properties of Li3V2(PO4)3 were studied for lithium-ion battery applications. The composite material was synthesized and found to show enhanced capacity and cyclability. The presence of silicon in the composites was confirmed. Furthermore, large particles with rough, corroded-like structures formed, and these were distributed well with the silicon particles. The Li3V2(PO4)3-Si battery had good properties showing improved cyclability, an improved high performance rate, smaller impedance values and improved lithium-ion diffusion coefficients, as determined by cyclic voltammetry. Furthermore, the optimization of the silicon content led to a Li3V2(PO4)3-Si battery with a 2?wt% silicon loading that had a discharge capacity of 181?mA?h?g?1. At 2?C, Li3V2(PO4)3-Si (2?wt%) still demonstrated a capacity of 111.8?mA?h?g?1, which was 83.8% of its original capacity (compared with 70.3?mA?h?g?1 and 63.8% for Li3V2(PO4)3) after 400 cycles.  相似文献   

10.
《Ceramics International》2021,47(24):34218-34224
An enhanced sol-gel combustion method was used to synthesize different porous Sc3+-doped Li3V2-xScx(PO4)3/C (x = 0.00, 0.05, 0.10 and 0.15) compounds. The substitution of Sc3+ into the V3+ sites of Li3V2-xScx(PO4)3/C expands the lattice volume along with the enlargement of Li+ diffusion channel, which is beneficial for Li+ transportation and ionic conductivity improvement. Besides, the Sc3+ doping content exhibits a great impact on the morphology of Li3V2-xScx(PO4)3/C composite. The pristine Li3V2(PO4)3/C are constituted of porous particles and nanorods, and the ratio of nanorods to particles can be controlled by adjusting the amount of Sc3+ doping since the ratio of nanorods to particles decreases with increasing Sc3+ doping content. When Sc3+ doping content increases to a certain level (x = 0.15, Li3V1.85Sc0.15(PO4)3/C), the nanorods are hardly seen. Li3V1.90Sc0.10(PO4)3/C with higher tapped density, better reversibility, smaller resistance and larger Li+ diffusion coefficient demonstrates outstanding rate performance and cyclic stability, together with high specific discharge capacities of 130.2 and 92.9 mAh g−1 at 0.5 and 20 C, respectively. Furthermore, a superior specific discharge capacity of 85.8 mAh g−1 was retained at 20 C following 1000 cycles. Overall, a novel approach for the preparation of high-performance Li3V2-xScx(PO4)3/C cathodes with different morphologies for lithium-ion batteries is provided.  相似文献   

11.
The properties of ZrO2 co-stabilized by CeO2 and TiO2 ceramic bulks were investigated for potential thermal barrier coating (TBC) applications. Results showed that the (Ce0.15Tix)Zr0.85-xO7 (x?=?0.05, 0.10, 0.15) compositions with single tetragonal phase were more stable than the traditional 8YSZ at 1573?K. These compositions also showed a large thermal expansion coefficient (TEC) and a high fracture toughness, which were comparable to those of YSZ. However, the phase stability, fracture toughness and sintering resistance of the CeO2-TiO2-ZrO2 system showed a decline tendency with the increase of TiO2 content. The TEC of the ceramic bulks decreased with increase of TiO2 content as well because the crystal energy was enhanced with increasing substitution of Zr4+ by smaller Ti4+. The (Ce0.15Ti0.05)Zr0.8O2 had the best comprehensive properties among the (Ce0.15Tix)Zr0.85-xO2 compositions as well as a low thermal conductivity. Therefore, it can be explored as a TBC candidate material for high-temperature applications.  相似文献   

12.
Monoclinic Li3V2−xAlx(PO4)3 with different Al3+ doping contents (x = 0, 0.05, 0.08, 0.10 and 0.12) have been prepared by a facile aluminothermal reaction. Aluminum nanoparticles have been used as source for Al3+ and nucleus for Li3V2−xAlx(PO4)3 nucleation as well as reducing agent in the aluminothermal strategy. The products were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and electrochemical methods. The XRD results show that the as-obtained Li3V2−xAlx(PO4)3 has a phase-pure monoclinic structure, irrespective of the Al3+ doping concentration. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) results reveal that the charge-transfer resistance of the Li3V2(PO4)3 is reduced and the reversibility is enhanced after V3+ substituted by Al3+. In addition, The Li3V2−xAlx(PO4)3 phases exhibit better cycling stability than the pristine Li3V2(PO4)3.  相似文献   

13.
A series of Cr2-xScx(MoO4)3 solid solutions with tunable monoclinic-to-orthorhombic phase transition temperature have been synthesized via solid-state reaction. X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results show that all synthesized Cr2-xScx(MoO4)3 (0?< x?≤?1.4) solid solutions are single phased with no impurities identified, which reveals that Cr3+ has been substituted by Sc3+ in Cr2(MoO4)3. Monoclinic to orthorhombic phase transition temperature of Cr2-xScx(MoO4)3 can be effectively tuned from 372?°C to room temperature as the substituted Sc3+-content (x) varies from 0 to 1.4. The synthesized Cr0.6Sc1.4(MoO4)3 crystalizes in an orthorhombic structure at room temperature, exhibiting anisotropic negative thermal expansion throughout the testing temperature range. The coefficient of thermal expansion measured by thermal mechanical analyzer (TMA) for Cr0.6Sc1.4(MoO4)3 is ?11.17?×?10?6 °C?1 in the testing temperature range of 30–600?°C. Moreover, the crystallization, micromorphology, density and coefficient of thermal expansion of Cr0.6Sc1.4(MoO4)3 are obviously sensitive to the twice sintering temperature, whereas none of such sensitivity is found for the phase transition temperature.  相似文献   

14.
Ta-doped Li7La3Zr2O12 (Ta-LLZO) is considered as a promising solid electrolyte due to high Li-ion conductivity and good chemical stability against electrode materials. In this work, Ta-LLZO was prepared by a conventional solid-state reaction. Ultrafine powders were obtained by ball-milling to improve the surface activity. Ta-LLZO is sintered in ZrO2 crucibles to avoid introducing Al into the samples. The particle size distribution, phase structure, morphology, ionic conductivity, electronic conductivity, density and electrochemical performance of semi-solid battery were characterized by laser diffraction particle size analyzer, X-ray diffraction, scanning electron microscope, AC-impedance, DC polarization, Archimedes method and a battery testing system, respectively. The results show that the ball milling to reduce the particle size is an effective way to solve the problem of relatively low density and Li-ion conductivity for Al-free Li7-xLa3Zr2-xTaxO12. For Al-free Li7-xLa3Zr2-xTaxO12, the increase of x (0.2?≤?x?≤?0.4) promotes the grain growth and sintering densification, but the increase of x (0.4?<?x?≤?0.6) has an adverse effect. Li6.7La3Zr1.7Ta0.3O12 sintered at 1180?°C for 12?h shows the relative density of 92% and the highest Li-ion conductivity of 1.03?×?10?3 S/cm at 30?°C with the activation energy of about 0.37?eV, while Li6.6La3Zr1.6Ta0.4O12 sintered at 1180?°C for 12?h shows the highest relative density of 96% and the Li-ion conductivity of 6.68?×?10?4 S/cm at 30?°C with the activation energy of about 0.46?eV. The electronic conductivity of Al-free Li7-xLa3Zr2-xTaxO12 is 10?9 S/cm orders of magnitude. The semi-solid battery shows the first discharge capacity of 104.6 mAh/g and 92.5% capacity retention after 20 cycles.  相似文献   

15.
Ca0.5Sr0.5Zr4-xTixP6O24 (x?=?0?0.2) ceramics belonging to the NZP family were prepared and dense ceramics with no microcracks were obtained. All of the ceramic samples were still composed of the typical NZP structure with a small amount of Ti4+ substitution for Zr4+. The mechanical and thermal expansion properties of the ceramics were characterized and the result showed that the flexural strength monotonically increased to 66.5?MPa. The thermal expansion coefficient varied from 1.8 to 3.4?×?10?6/°C with Ti4+ content increasing. Thus, it was clear that the substitution of Ti4+ for Zr4+ had obvious effects on the sinterability, mechanical and thermal expansion properties of Ca0.5Sr0.5Zr4-xTixP6O24 ceramics, which were discussed in detail.  相似文献   

16.
New Al3+ ion conducting solid electrolytes (Al0.2Zr0.8)4/3.8NbP3O12-xF2x(0?≤x?≤?0.4) with Nasicon-structure are successfully prepared by solid state reaction method. The influences of the doped F- content on the properties of the (Al0.2Zr0.8)4/3.8NbP3O12-xF2x samples are investigated using X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The results show that F- doping can effectively improve the sinterability and the total conductivity of the (Al0.2Zr0.8)4/3.8NbP3O12-xF2x samples. Among the solids series, (Al0.2Zr0.8)4/3.8NbP3O11.7F0.6 shows the highest conductivity of 1.53?×?10?3 S?cm?1at 500?°C, which is approximately 7.9 times higher than that of the undoped (Al0.2Zr0.8)4/3.8NbP3O12. The ion transference number of the samples is higher than 0.99 at 300–700?°C. On the basis of the promising properties, a mixed-potential type NH3 sensor based on (Al0.2Zr0.8)4/3.8NbP3O11.7F0.6 electrolyte and In2O3 sensing electrode has been developed. The sensing performance of the sensor is evaluated. The mixed-potential type sensor can work at relatively low temperatures of 200–350?°C and an excellent sensitivity of 99.71?mV/decade at 250?°C is obtained. The sensor also displays excellent stability and reproducibility, accompanied by low cross-sensitivities to CO2, CH4 and H2.  相似文献   

17.
Cr-doped Li3V2−xCrx(PO4)3/C (x = 0, 0.05, 0.1, 0.2, 0.5, 1) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li3V2−xCrx(PO4)3/C with monoclinic structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content in Li3V2−xCrx(PO4)3/C. Li3V1.9Cr0.1(PO4)3/C compound presents an initial capacity of 171.4 mAh g−1 and 78.6% capacity retention after 100 cycles at 0.2C rate. At 4C rate, the Li3V1.9Cr0.1(PO4)3/C can give an initial capacity of 130.2 mAh g−1 and 10.8% capacity loss after 100 cycles where the Li3V2(PO4)3/C presents the initial capacity of 127.4 mAh g−1 and capacity loss of 14.9%. Enhanced rate and cyclic capability may be attributed to the optimizing particle size, carbon coating quality, and structural stability during the proper amount of Cr-doping (x = 0.1) in V sites.  相似文献   

18.
The Li2MgTi1-x(Mg1/3Nb2/3)xO4 (0?≤x?≤?0.5) ceramics were prepared by the conventional solid-state method. The relationship among phase composition, substitution amount and microwave dielectric properties of the ceramics was symmetrically investigated. All the samples possess the rock salt structure with the space group of Fm-3m. As the x value increases from 0 to 0.5, the dielectric constant linearly decreases from 16.75 to 15.56, which can be explained by the variation of Raman spectra and infrared spectra. The Q·f value shows an upward tendency in the range of 0?≤x?≤?0.3, but it then decreases when x?>?0.3. In addition, the temperature coefficient of resonant frequency (τf) is shifted toward zero with the increasing (Mg1/3Nb2/3)4+ addition. By comparison, the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr=?16.19, Q·f =?160,000?GHz and τf =??3.14?ppm/°C.  相似文献   

19.
Li7La3Zr2O12 (LLZO) with cubic garnet type structure is a promising solid electrolyte. In this work, Li6.925-3xAlxLa3Zr1.925Sb0.075O12 (0 ≤ x ≤ 0.1) electrolytes were prepared by conventional solid-state reaction. The influence of Sb-Al cosubstitution on the structure, microstructure and conductivity of Li7La3Zr2O12 were investigated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and impedance spectroscopy. Single cubic phase has been achieved for Li6.925-3xAlxLa3Zr1.925Sb0.075O12 (x = 0–0.075). Suitable amount of Al-Sb cosubstitution accelerates densification and improves the ionic conductivity. Li6.775Al0.05La3Zr1.925Sb0.075O12 exhibits highest relative densities (96.7%) and total ionic conductivity (4.10 × 10?4 S/cm at 30 °C).  相似文献   

20.
《Ceramics International》2022,48(21):31755-31762
A family of doped-NASICON-type structures according to the chemical compositions: Li1.2 Zr1.9M0.1(PO4)3 [with M = Ca2+, Mg2+, Zn2+]; Li1.1 Zr1.9Y0.1(PO4)3 and Li1.0 Zr1.9Ce0.1(PO4)3 have been synthesized by solid state reaction. The modification on the thermal treatment proposed in this work makes possible to obtain a high purity phase confirmed by XRD, SEM, microRaman-confocal and FTIR. Rietveld refinement evidences how the LZP lattice parameters are affected by each of those five different dopant cations incorporated into the pristine structure. Impedance spectroscopy proves how the relationship radius - charge of each dopant-ion affects the ionic conductivity. Unravelling that the partial replacement of Zr4+ in the LZP by a dopant improves the conductivity behavior. When the dopant cation has a lower charge and a larger size than the Zr4+ the developed structure favours the lithium-ion mobility at room temperature and the lithium conductivity increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号