首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tb3+-doped 25Na2O-23CaO-6P2O5-44B2O3-2ZrO2 glass was fabricated by conventional melt-quenching technique. Glass-ceramics containing NaCaPO4 crystals were then obtained by heating the as-prepared glasses. Their optical and luminescence properties were studied by FT-IR spectroscopy, photoluminescence (PL), absorption spectra, thermoluminescence (TL), and optically stimulated luminescence in continuous wave modality (CW-OSL). The glasses were composed of [PO4], [BO3], and [BO4] basic structural units. The PL excitation and emission spectra exhibited Tb3+-related transitions, as well as the strongest excitation and emission wavelengths at 370 and 454 nm, respectively. We further investigated the CW-OSL properties as a function of dopant concentration and time elapsed after irradiation (signal fading). Results indicated that the CW-OSL intensity reached a maximum when the Tb4O7 concentration was 0.25 mol%. The fading of the OSL signal showed that the OSL signal of Tb3+-doped NaCaPO4 glass-ceramics was approximately 65% in 8 days, after which the intensity remained stable. The TL glow curves had a broad peak feature peaking at 180 ± 5ºC. The samples also exhibited good signal reusability and a broad linear dose-response range (0.03-1000 Gy). The excellent luminescent and dosimetric properties of these Tb3+-doped NaCaPO4 glass-ceramics indicated their potential applications in radiation dosimetry.  相似文献   

2.
《Ceramics International》2023,49(4):5872-5883
A series of Eu3+ and Eu3+/Gd3+ co-doped barium-bismuth-borate (Ba–Bi–B) glasses were prepared by melt-quench technique. And deliberated the physical, structural, and spectroscopic properties of all glasses and explored the energy transfer process from Gd3+ to Eu3+ ions. The density of glasses increased with increasing of Gd3+ concentration in co-doped glasses. Characteristics of steady-state and time-resolved photoluminescence (PL) of Eu-doped and Eu3+-Gd3+ co-doped glasses under different excitation wavelengths suggested the prospects of the investigated glass system for display device applications. PL spectrum displays a strong red emission peak centered at 612 nm due to the Eu3+: 5D07F2 transition. Less intense emissions centered at 577 nm (7F0), 590 nm (7F1), 651 nm (7F3) and 700 nm (7F4) are also observed from the radiative transitions of the excited state 5D0 of Eu3+ions. The values of radiative parameters such as transition probability, branching ratios, and stimulated emission cross-sections were obtained from Judd–Ofelt theory analysis and indicated the aptness of the Ba–Bi–B glasses for optical devices. A 5-fold enhancement in the PL intensity was observed in 1.0 mol% Eu3+ and 3.0 mol% Gd3+ co-doped glass under λExci. = 394 nm excitation. The calculated commission Internationale de l'eclairage color coordinates and correlated color temperature values show that the Ba–Bi–B glasses are useful for red-laser and display device applications.  相似文献   

3.
《Ceramics International》2015,41(4):5765-5771
Trivalent erbium (Er3+)-doped K–Sr–Al phosphate glasses were prepared and studied their spectroscopic properties as a function of Er2O3 concentration. Judd–Ofelt analysis has been carried out for 1.0 mol% Er2O3-doped phosphate glass and in turn radiative properties have been evaluated for the excited levels of Er3+ ion. The radiative lifetime for the 4I13/2 level was found to be higher for the present glass when compared to other Er3+-doped glasses. The Er3+-doped glasses exhibit intense near infrared emission at 1.53 µm corresponds to 4I13/24I15/2 transition as well as green emission at 546 nm corresponding to 4S3/24I15/2 under 980 nm and 488 nm excitations, respectively. The emission cross-section spectrum for 1.0 mol% of Er2O3-doped glass has been evaluated using McCumber theory. The gain cross-section has been evaluated as a function of population inversion, which revealed that the lasing action would be achieved at 1.53 µm for a population inversion about 40%. Decay curves for the 4I13/2 level were measured and lifetimes have been determined for the studied glasses. The results indicate that the present glasses could be useful for laser as well as optical amplifiers at 1.53 µm.  相似文献   

4.
《Ceramics International》2016,42(3):4019-4025
Terbium ion doped zinc aluminum phosphate (ZAP) glasses with composition (90−x)((90−y)P2O5–10Al2O3yZnO)–xTb2O3 (x=0.5–9 in mol% and y=30, 35, 40 in mol%) have been prepared by melt quenching method, and the effects of the Tb2O3 and ZnO content on the luminescence properties have been studied by photoluminescence spectroscopies. It was found that the green emission peaked at 544 nm is significantly enhanced under higher Tb2O3 content, meanwhile the sensitization effect of ZnO content is confirmed from the enhanced main emission. The quenching effect attributed to the resonant energy transfer through the cross-relaxation mechanism is observed when Tb2O3 concentration is beyond 2.5 mol% due to the fact that more Tb3+ ions enhance the 4f→5d and 4f→4f electronic transitions through the dipole–dipole (d–d) interaction. Also, ZnO plays a role of the disperser to prevent non-radiative de-excitation process. A characteristic luminescence image of the (100−x)(60P2O5–10Al2O3–30ZnO)·xTb2O3 series glasses under UV excitation at 366 nm is presented for the first time, and the transition of luminescence suggests that the Tb3+-doped ZAP glasses are suitable for green and dual-color blue/green LED applications by modulation of Tb and ZnO composition.  相似文献   

5.
《Ceramics International》2023,49(15):24718-24729
A novel series of Tb3+, Sm3+ single doped and Tb3+/Sm3+ co-incorporated tungsten tellurite glasses were synthesized by melt quenching technique and corresponding structural as well as luminescence features of the prepared glasses have been reported here. Spectral overlapping between the luminescence spectra of Tb3+ ions and the excitation spectra of Sm3+ ions manifests that the energy transfer process takes place from Tb3+ ions to Sm3+ ions. By using the dual excitations at 377 and 484 nm, the titled co-doped glasses emit green light of wavelength 542 nm along with reddish – orange colour light at 599 nm. In addition to this, there is no possibility of reverse energy transfer which is validated with the help of excitation at 403 nm (Sm3+ ions) as major evidence. The lifetimes of all co-doped glasses decline with increasing Tb3+ doping level in the ligand matrices, indicating the energy migration process takes place from Tb3+→ Sm3+. The chromaticity coordinates of all synthesized co-doped glasses lie in yellowish-orange region of CIE1931 diagram and it shifts to deep yellow region when Tb3+ ion concentration varies. Our findings propose that the titled glasses can be used as visible laser materials for multicolor laser applications.  相似文献   

6.
Novel Tb3+-activated borogermanate-tellurite scintillating glasses with a maximum density of 7.15 g/cm3 aimed at detection of high-energy rays were prepared by a melt-quenching method for the first time. The concentration-dependent optical properties including transmittance, photoluminescence, luminescence dynamic behaviors, and X-ray excited luminescence in the as-prepared Tb3+-activated borogermanate-tellurite glasses were studied. The optimal content of Tb2O3 in the superdense borogermanate-tellurite glasses is revealed to be 7 mol% under both 275 nm ultraviolet light and X-ray excitation. The integral scintillation efficiency of Tb3+-activated borogermanate-tellurite scintillating glass is about 33.71% of the standard Bi4Ge3O12 (BGO) scintillating crystal.  相似文献   

7.
This article reports on the emission properties of cadmium bismuth borate (CdBiB) glasses as a function of doping concentrations of Eu3+ and Tb3+ ions. The functional groups present in the glasses have been identified by analyzing FT-IR spectra. The emission spectra of Eu3+ and Tb3+:CdBiB glasses have shown reddish green emissions at 616 nm (5D07F2) under the excitation at 465 nm and at 547 nm (5D47F5) under the excitation at 485 nm, respectively. The Judd–Ofelt (J–O) theory was applied to evaluate the J–O intensity parameters from the absorption and the emission spectra; by using the J–O intensity (Ωλ) parameters, spontaneous emission transition probability (A), total radiative transition rate (AT), radiative lifetime (τR) and branching ratios (β) of the various emission transitions have been computed for both Eu3+ and Tb3+:CdBiB glasses. The quenching behavior in the emission intensity with increased concentration of Eu3+ and Tb3+ was observed, which could be useful for optimizing the compositions toward practical applications.  相似文献   

8.
Dysprosium (Dy3+)-doped antimony-magnesium-strontium-oxyfluoroborate (B2O3 MgF2 SrO Sb2O3 Dy2O3, BMFSrSbD), glasses were synthesized by traditional melt-quenching method. The synthesized samples have been analyzed by X-ray diffraction, optical absorption and fluorescence techniques for deriving various characteristic properties. Emission spectra of Dy3+: samples were exhibit three well resolved emission bands at around 482, 575 and 666?nm which originated from the 4F9/26H15/2,4F9/26H13/2 and 4F9/26H11/2 transitions upon excitation of wavelength at 452?nm. Decay curves of the 4F9/2 level of Dy3+ ion were display mono-exponential at low Dy3+ concentration (0.1?mol%) and deviated to non-exponential behavior at high concentration of Dy3+ ions (≥?0.5?mol%). Lifetime of the 4F9/2 level was decreased with increase of Dy3+ ions concentration. Chromaticity coordinates (x,y) of Dy3+:BMFSrSbD samples were evaluated and represented in CIE 1931 chromaticity diagram, appear in the whitish-yellow region. The results suggest that these glasses could be utilized as a potential candidate for the development of display devices and lasers at a wavelength of 575?nm.  相似文献   

9.
《Ceramics International》2023,49(6):8863-8870
Compared with single-crystal scintillator, the glass scintillators have the benefits of low cost, big size, straightforward manufacturing method, and adjustable component. In this work, a succession of diaphanous gallogermanate glass scintillators doped with Tb3+ or Eu3+ were manufactured using melt-quenching technique. The thermal, structural, photoluminescent, and scintillating properties were studied. For photoluminescent properties, 12 mol% Tb3+-doped glass sample has high internal quantum efficiency (87.8%) and no obvious concentration quenching phenomenon can be observed. For scintillating properties, the optimal doping concentration of Tb3+ and Eu3+ are 4 mol% and 8 mol%, respectively. The integral intensity of X-ray excited luminescence of Tb3+-doped sample is 73.1% of that of Bi4Ge3O12 scintillator, while the ratio of Eu3+-doped sample is 26.5%. The radiation damage of 4 mol% Tb3+-doped sample resulted by high power X-ray could be repaired through heat-treatment, while 8 mol% Eu3+-doped sample exhibits fine stability that the transmittance keeps constant after exposed to high power X-ray. Our research indicates Tb3+ or Eu3+ doped gallogermanate glass might be candidate for X-ray detection of slow events.  相似文献   

10.
A new series of Dy3+-doped sodium lead alumino borosilicate glasses are prepared by the melt quenching technique with the chemical composition 20Na2O- 10PbO-(5-x)Al2O3-40B2O3–25SiO2-xDy2O3 (where x?=?0, 0.5, 1.0 and 1.5?mol%) and are characterized by various spectroscopic techniques such as XRD, FT-IR, Optical absorption spectra, Fluorescence spectra and Decay measurements. Optical and Luminescence spectra of all the glasses are recorded at room temperature. From the optical absorption spectra, optical band gap and Urbach energies of Dy3+-doped titled glasses have been evaluated. The oscillator strengths and the intensity parameters, Ωλ (λ?=?2, 4 and 6) are calculated using Judd-Ofelt analysis. The various lasing parameters like transition probability (AT), branching ratio (βR), stimulated emission cross-section (σe) and the radiative lifetime (τrad) for different emission levels of Dy3+ ions have been evaluated. Fluorescence spectra show sharp emission peaks are observed at 482?nm (blue), 575?nm (yellow) and 665 (red) under 385?nm excitation, which are attributed to 4F9/26H15/2, 6H13/2 and 6H11/2 transitions respectively. The yellow-to-blue intensity ratio (Y/B) increase up to 1.0?mol% Dy3+ ion content and beyond it decreases because of concentration quenching which occurs due to the energy transfer between Dy3+ and Dy3+ ions. The x, y coordinates of the prepared glasses pass through the white light region in the CIE 1931 chromaticity diagram. The results reveal that these glasses emit quality white light which is suitable for the development of W-LEDs. The color purity and the correlated color temperature (CCT) are also calculated for the present work. Various physical parameters such as density, refractive index, and ion concentration etc., are calculated. Among the prepared glasses, NPABSDy10 glass exhibits higher σe, βR, σeR, and σexΔλeff values corresponding to the 4F9/26H13/2 emission band and these are in turn specifies its suitability for W-LEDs and visible laser applications.  相似文献   

11.
In contrast to Yb3+ which is a well-investigated optically active ion, the spectroscopic properties of its divalent counterpart Yb2+ in glasses are hardly investigated, although Yb2+ might have a notable influence on the luminescence properties of Yb3+-doped glasses even at low Yb2+ concentrations because of its strong f-d transitions. In this paper, we report on the preparation and spectroscopic properties of Yb2+-doped aluminosilicate glasses that were produced using the normal melt-quench technique. The glass composition is 20CaO·20Al2O3·60SiO2 (mol%). To achieve a sufficient amount of Yb2+ in the samples, different methods were applied to influence the red-ox equilibrium during glass melting: firstly, under argon atmosphere and additional argon bubbling, and secondly by the addition of metallic aluminum powder to the batch. The strongly reduced samples show a greenish to brownish yellow coloring which could be attributed to the strong absorption of Yb2+ ions in the UV to blue spectral range. The absolute Yb2+ concentration in the glass and the molar extinction coefficient of Yb2+ was obtained by spectroscopic measurements. If irradiated with UV light, the Yb2+-doped samples show a broad fluorescence emission in the wavelength range from 450 to 700 nm with a peak at around 515 nm.  相似文献   

12.
《Ceramics International》2015,41(4):5525-5530
A series of single-phase Eu3+, Tb3+, Bi3+ co-doped LaPO4 phosphors were synthesized by solid-state reaction at 800 °C. Crystal structures of the phosphors were investigated by X-ray diffraction (XRD). A monoclinic phase was confirmed. The excitation (PLE) and emission (PL) spectra showed that the phosphors could emit red light centered at 591 nm under the 392 nm excitation, which is in good agreement with the emission wavelength from near-ultraviolet (n-UV) LED chip (370–410 nm). The results of PLE and PL indicated that the co-doped Tb3+ and Bi3+could enhance emission of Eu3+ and the fluorescent intensities of the phosphors excited at 392 nm could reach to a maximum value when the doping molar concentration of Tb3+ and Bi3+ is about 2.0% and 2.0%, respectively. The co-doping Tb3+ and Bi3+ ions can strengthen the absorption of near UV region. They can also be efficient to sensitize the emission of Eu3+, indicating that the energy transfer occurs from Tb3+ and Bi3+ to Eu3+ ions. From further investigation it can be found that co-doping Tb3+ and Bi3+ ions can also induce excitation energy reassignment between 5D07F1 and 5D07F2 in these phosphors, and result in more energy assignment to 5D07F2 emission in LaPO4:Eu3+, Tb3+, Bi3+. Our research results displayed that La0.94PO4:Eu3+0.02, Tb3+0.02, Bi3+0.02 could be a new one and could provide a potential red-emitting phosphor for UV-based white LED.  相似文献   

13.
《Ceramics International》2016,42(9):11099-11103
Tb3+ions activated Ba4La6O(SiO4)6 (BLSO:Tb3+) phosphors were synthesized by a citrate sol-gel method. The X-ray diffraction pattern confirmed their oxyapatite structure. The field-emission scanning electron microscope image established that the BLSO:Tb3+phosphor particles were closely-packed and acquired irregular shapes. The photoluminescence (PL) excitation spectra of BLSO:Tb3+phosphors showed intense f–d transitions along with low intense peaks corresponding to the f–f transitions of Tb3+ions in the lower energy region. The PL emission spectra displayed the characteristic emission bands of Tb3+ions, and the optimized concentrations were found to be at 1 and 6 mol% for blue and green emission peaks, respectively. The cathodoluminescece (CL) spectra exhibited a similar behavior that was observed in the PL spectra except the intensity variations in the blue and green regions. The CL spectra of the BLSO:6 mol% Tb3+phosphor unveiled accelerating voltage induced luminescent properties.  相似文献   

14.
Tb3+-doped SrO–Al2O3–SiO2 glass-ceramics are prepared by melting under ambient atmosphere and followed by two-step heat treatment approach. Extensive differential thermal analysis, X-ray diffraction and scanning electron microscope characterizations are applied to investigate thermal properties, crystal structure, and morphology of these glass-ceramics. The results indicate that the optimal ratio of two nucleation agents (TiO2 and ZrO2) is 3:1 (molar fraction) in glass-ceramics. In addition, several heat treatment schedules are developed to study the influence of treatment temperature on luminescence properties of Tb3+- doped glass-ceramics. The results demonstrate that there are four emission bands located at 489, 547, 588 and 623 nm under 376 nm ultraviolet excitation, corresponding to 5D47Fj (j = 6, 5, 4, 3) transitions of Tb3+, respectively. At last, the corresponding chromaticity coordinates are calculated and constructed, which indicates that the Tb3+ glass-ceramic can emit approximate white light under 376 nm ultraviolet excitation when they nucleated at 950°C and crystallized at 1050°C. The white immersion approached standard illuminant C as the crystallization temperature increased.  相似文献   

15.
《Ceramics International》2022,48(5):6007-6015
The luminescent characteristics of spherical hafnia/silica (HfO2/SiO2) nanoparticles (NP?s) co-doped with Tb3+/Yb3+ were analysed. These NP?s were synthesized using the spray pyrolysis technique. The addition of SiO2 and Tb3+/Yb3+ was found to induce a cubic phase in HfO2. The luminescent spectra presented the characteristic emission peaks for inter-electronic energy levels transitions of the Tb3+ and Yb3+ ions, with an excitation band centred at 270 nm. Under solid-state laser excitation at 980 nm an upconversion emission related to the Tb3+ ion was observed. The maximum emission peak in the visible region was at 543 nm, associated with 5D47F5 transitions of the Tb3+ ions and an IR emission peak at 970 nm (2F5/2 → 2F7/2) pertaining to Yb3+, with irradiation at 270 nm (UV). The energy transfer mechanism from Tb3+→Yb3+ (excitation at 270 nm), is discussed based on the time decay of the luminescence intensity analysis and the energy transfer efficiency (ηET) and was determined to be in the range of 29.2% to40.8%.  相似文献   

16.
Ce3+-doped 20Gd2O3–20Al2O3–60SiO2 (GAS:xCe3+) glasses (x = 0.3, 0.7, 1.1, 1.5, 1.9 mol%) with Si3N4 as a reducing agent were prepared. The density of the glasses is around 4.2 g/cm3. With the increase in the Ce3+ concentration, both the photoluminescence (PL) and PL excitation peaks of GAS:xCe3+ glasses show a redshift because the 4f–5d energy levels of Ce3+ ions are narrowed. PL quantum yield and PL decay time of GAS:xCe3+ glasses are 28.32–50.59% and 43–64 ns, respectively. In addition, they both first increases and then decreases with the Ce3+ concentration increasing, reached the maximum when x = 1.1 mol%. The integrated X-ray excited luminescence (XEL) intensity of the GAS:1.1Ce3+ glass is 23.86% of that of Bi4Ge3O12 (BGO) crystal, and the light yield reaches 1200 ph/MeV with an energy resolution of 22.98% at 662 keV when exposed to γ-rays. The PL and XEL thermal activation energies of GAS:xCe3+ glasses are independent of Ce3+ ions concentration. Scintillating decay time of the glasses exhibits two components consisting of nanosecond and microsecond levels, and the scintillating decay time gradually decreases with the Ce3+ concentration increasing. The difference between PL and scintillating decay time is discussed regarding the different luminescent mechanisms.  相似文献   

17.
Tb3+/Gd3+ dual-doped multifunctional hydroxyapatite (Tb3+/Gd3+-HAp) nanoparticles with magnetic and luminescent properties were prepared by the co-precipitation method using CaCl2 and Na2HPO4·12H2O as raw materials and CTAB as a template in alkaline conditions. The products were characterized by X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM). Single hexagonal phase Tb3+/Gd3+-HAp nanoparticles were obtained by the co-precipitation method and the products were sphere-like morphology with particle sizes ranging from 40 to 100 nm. Crystallinity degree of the products decreased with the Tb3+/Gd3+ substitute increasing. Photoluminescence (PL) and magnetic properties of the products were also investigated. The results show Tb3+/Gd3+-HAp nanoparticles are endowed with strong luminescence at 544 nm and prominent paramagnetic behavior, allowing their potential applications in biological labeling. Gd3+ ions sensitize the 5D4-7F5 transition emission of Tb3+ ions in HAp nanoparticles, and the PL emission intensity increases along with increasing concentration of Gd3+ ions. Concentration quenching occurs when the Gd3+ concentration exceeds 10 mol%. The magnetization level of Tb3+/Gd3+-HAp increased steadily with the doping concentration of Gd3+ ions.  相似文献   

18.
Sm3+-doped oxyfluorosilicate glasses were fabricated through traditional melt quenching technique. After the heat treatment of the prepared glass, transparent SrF2 nanocrystalline glass-ceramics (GC) were obtained. The amorphous nature of the prepared glasses and crystalline phase (SrF2) of the GC were confirmed by XRD analysis. Abbe number was calculated for all the prepared glasses by measuring refractive index at different wavelengths. In the framework of Judd-Ofelt (JO) theory, the JO intensity parameters were obtained from the absorption spectra of 1.0 mol% Sm2O3-doped glass. The photoluminescence spectrum was recorded with 401 nm excitation. From the analysis of optical spectra and JO parameters, the radiative properties like radiative transition probabilities, branching ratios and radiative lifetimes for the fluorescent levels of Sm3+ ions were determined. The effect of γ-irradiation on luminescence properties and X-ray induced luminescence properties were also studied. The emission intensity was increased for GC where as it decreases with increase of γ-irradiation dosages. There are no noticeable changes in the position as well as intensity in photoluminescence and X-ray induced luminescence spectra for GC sample but after the γ-irradiation, the emission intensity was decreased moderately. The luminescence decay profiles for 4G5/2 level were recorded and it is changed from exponential to non-exponential nature for higher Sm3+ ion concentrations. The decay profiles which exhibit non-exponential nature are well fitted to the Inokuti-Hirayama model and determined the energy transfer parameters. By using the integrating sphere, the quantum yield values were obtained for all the prepared glasses. The detailed study of the present glasses reveals that these glasses could be useful for radiation shielding and scintillation applications.  相似文献   

19.
《Ceramics International》2023,49(19):31607-31617
Optical information encryption based on luminescence materials have received much attention recently. However, the single luminescence mode of the luminescence materials greatly limits its anti-counterfeiting application with high safety level. Here, a series of luminescence materials of Tb3+ and Bi3+ co-doped ZnGa2O4 phosphors with great correspondence in photoluminescence (PL), persistent luminescence (PersL), and thermoluminescence (TL) modes was synthesized by the conventional solid-phase method for the application in multi-modal anti-counterfeiting fields. Under the excitation of 254 nm, ZnGa1.99O4:0.01 Tb3+, yBi3+ (y = 0.001,0.002) sample exhibited a broad blue emission band (the transition from [GaO6]) at 440 nm and the characteristic emission peaks of Tb3+ at 495 nm, 550 nm, 591 nm and 625 nm, corresponding to the transitions of 5D4-7Fn (n = 6, 5, 4, 3), respectively. Interestingly, the co-doping of Bi3+ ions improve the crystallinity and particle size of the phosphor, subsequently enhanced the PL intensity of Tb3+ to 6 times that of Tb3+ singly doped ZnGa2O4 phosphor. Further, the flexible films with multi-modal luminescence properties have been fabricated through the unique TL and PersL characteristics of ZnGa2O4: Tb3+, Bi3+ phosphors, including “Optical information storage film”, “snowflake and characters” and “QR code”. Moreover, a set of optical information encryption is obtained by combining ZnGa2O4:Tb3+, Bi3+ phosphor and red emitting phosphor. The results indicate that ZnGa2O4:Tb3+, Bi3+ phosphor with multi-modal stimulus response can be expected to be potentially used in the applications of optical information storage and anti-counterfeiting fields.  相似文献   

20.
Tb3+-doped La1−xAlO3 phosphor powders are successfully synthesized by the solution combustion method, using citric acid as the combustion fuel. The crystal structure and photoluminescence properties of La1−xAlO3:xTb3+ phosphors are studied, depending on Tb3+ content. The strongest emission peak is found at 543 nm, which originates from the 5D47F5 transition of Tb3+ ions, indicating green emission. Among the fabricated phosphors, the La0.9AlO3:0.1Tb3+ phosphor emits the strongest green light. The excellent luminescent properties make it a possible candidate for white light-emitting diodes and various photonic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号