首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Li2MgTi1-x(Mg1/3Nb2/3)xO4 (0?≤x?≤?0.5) ceramics were prepared by the conventional solid-state method. The relationship among phase composition, substitution amount and microwave dielectric properties of the ceramics was symmetrically investigated. All the samples possess the rock salt structure with the space group of Fm-3m. As the x value increases from 0 to 0.5, the dielectric constant linearly decreases from 16.75 to 15.56, which can be explained by the variation of Raman spectra and infrared spectra. The Q·f value shows an upward tendency in the range of 0?≤x?≤?0.3, but it then decreases when x?>?0.3. In addition, the temperature coefficient of resonant frequency (τf) is shifted toward zero with the increasing (Mg1/3Nb2/3)4+ addition. By comparison, the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr=?16.19, Q·f =?160,000?GHz and τf =??3.14?ppm/°C.  相似文献   

2.
Recently, the rapid development of advanced communication systems increasingly strongly demands high-performance microwave dielectric ceramics in microwave circuits. Among them, Li2ZnTi3O8 ceramics have been one of the most widely investigated species, due to its high quality factor, moderate firing conditions and low cost. However, the dielectric constants of the already reported Li2ZnTi3O8 ceramics are fixed in a narrow range, limiting their wider applications. To adjust the dielectric constant of the Li2ZnTi3O8 based ceramics, in this work Li2ZnTi3O8 ceramics added with different amounts of Al2O3 (0–8?wt%) were prepared by conventional solid-state reaction. The microstructure and microwave dielectric properties of the samples were investigated. Due to the addition of Al2O3, the sintering temperature of the ceramics would be increased somewhat. Some Al3+ ions could substitute for Ti4+ ions in Li2ZnTi3O8, and the added Al2O3 would react with ZnO to produce a ZnAl2O4 phase accompanying with the formation of TiO2 phase, which would inhibit the growth of Li2ZnTi3O8 grains. The dielectric constant of the finally obtained ceramics would be reduced from 26.2 to 17.9, although the quality factors of the obtained ceramics would decrease somewhat and the temperature coefficient of resonant frequency would deviate further from zero.  相似文献   

3.
Low sintering temperature ZnNb2O6 microwave ceramics were prepared by doping with mixed oxides of V2O5–Bi2O3 and V2O5–Bi2O3–CuO. The effects of additives on the microstructure and dielectric properties of the ceramics were investigated. The results show that doping with V2O5–Bi2O3 can reduce the sintering temperature of ZnNb2O6 from 1150 °C to 1000 °C due to the formation of V2O5 and Bi2O3 based eutectic phases. The combined influence of V2O5 and Bi2O3 resulted in rod-like grains. Co-doping CuO with 1 wt.% V2O5–1 wt.% Bi2O3 further lowered the sintering temperature to 880 °C, because eutectic phases could be formed between the CuO, V2O5 and Bi2O3. A second phase of (Cu2Zn)Nb2O8 also forms when the content of CuO is greater than 2.5 wt.%. A pure ZnNb2O6 phase can be obtained when the amount of CuO was 1.0–2.5 wt.%. The Q × f values of ZnNb2O6 ceramics doped with V2O5–Bi2O3–CuO were all higher than 25,000 GHz. The dielectric constants were 22.8–23.8 at microwave frequencies. In addition, theτf values decreased towards negative as the content of CuO increased. The ceramic with composition of ZnNb2O6 + 1 wt.%V2O5 + 1 wt.% Bi2O3 + 2.5 wt.% CuO sintered at 880 °C exhibited the optimum microwave dielectric properties, is 23.4, Q × f is 46,975 GHz, and τf is −44.89 ppm/°C, which makes it a promising material for low-temperature co-fired ceramics (LTCCs).  相似文献   

4.
The influences of Li2O-B2O3-SiO2 glass (LBS) on the activation energy, phase composition, the stability of the structure and microwave dielectric properties of Zn0.15Nb0.3Ti0.55O2 ceramics have been systematically investigated. LBS glass acted as flux former and contributed to the reactive liquid-phase sintering mechanism, which remarkably lowed the sintering temperature from 1150?°C to 900?°C and enhanced the shrinkage and densification of ceramic at the low sintering temperatures. The ceramics with 1.5?wt% LBS glass sintered at 900?°C for 3?h show great properties: εr = 73.59, Q × f = 8024?GHz, τf = 270.54?ppm/°C.  相似文献   

5.
In the present study, Aurivillius-structured Ba2+ substituted CaBi2Nb2O9 (CBNO) ceramic powder was synthesized by co-precipitation method. The CBNO thick films were delineated by screen printing method on alumina substrates using co-precipitated ceramic powder. The overlay method was adopted to measure the microwave dielectric properties of prepared thick films. Single phase layered perovskite structure of the prepared thick films was confirmed by X-ray Diffraction. The effects of Ba2+ substitution on the surface morphology, bonding, and microwave dielectric properties of thick films were systematically presented. The maximum value of microwave dielectric constant for the CBNO thick films at 11.8 GHz is 15.6 for Ba2+=0.8 substitution. The shift in the stretching vibration modes of the Nb-O bond of NbO6 octahedron in the Raman spectra with a substitution of Ba2+ in CBNO was observed. The substitution of Ba2+ on A-site of CBNO improves the microwave dielectric properties of prepared thick films. This work may provide a new approach to enhance the microwave dielectric performance of Aurivillius-structured ceramic thick films.  相似文献   

6.
The phase composition, microstructure, microwave dielectric properties of (Al0.5Nb0.5)4+ co-substitution for Ti site in LiNb0.6Ti0.5O3 ceramics and the low temperature sintering behaviors of Li2O-B2O3-SiO2 (LBS) glass were systematically discussed. XRD patterns and EDS analysis result confirmed that single phase of Li1.075Nb0.625Ti0.45O3 solid solution was formed in all component. The increase of dielectric constant (εr) is ascribed to the improvement of bulk density. The restricted growth of grain has a negative influence on quality factor (Q×f) value. The τf value could be continuously shifted to near zero as the doping content increases. Great microwave dielectric properties were obtained in LiNb0.6Ti(0.5-x)(Al0.5Nb0.5)xO3 ceramics (x?=?0.10) when sintered at 1100?℃ for 2?h: εr =?70.34, Q×f =?5144?GHz, τf =?4.8?ppm/℃. The sintering aid, LBS glass, can effectively reduce the temperature and remain satisfied microwave performance. Excellent microwave dielectric properties for x?=?0.10 were obtained with 1.0?wt% glass: εr =?70.16, Q×f =?4153?GHz (at 4?GHz), τf =?-0.65?ppm/℃ when sintered at 925?℃ for 2?h.  相似文献   

7.
The effects of CaSiO3 addition on the sintering behavior and microwave dielectric properties of Al2O3 ceramics have been investigated. The addition of CaSiO3 into Al2O3 ceramics resulted in the emergence of Ca2Al2SiO7 and CaAl2Si2O8, which acting as liquid sintering aids can effectively lower the sintering temperature of Al2O3 ceramic. The Q × f value of Al2O3-CaSiO3 ceramics decreased with the CaSiO3 addition increasing because of the lower Q × f value of Ca2Al2SiO7 and CaAl2Si2O8. Compared with the pure CaSiO3 ceramic, the Al2O3-CaSiO3 ceramic with 20 wt% CaSiO3 addition possessed good dielectric properties of ?r = 9.36 and Q × f = 13,678 GHz at the similar sintering temperature.  相似文献   

8.
Guangyu Dong  W. Li 《Ceramics International》2021,47(14):19955-19958
The sintering behavior, microstructure and microwave dielectric properties of Al2O3 ceramics co-doped with 3000ppmCuO2+6000ppmTiO2+500ppmMgO (Cu/Ti/Mg) have been investigated. The results show that 1 wt% Cu/Ti/Mg can reduce the sintering temperature of Al2O3 ceramics effectively. Samples with relative densities of ≥97% and uniform microstructure can be obtained when sintered at 1150 °C. Higher temperature can further increase the density of the sample, but it inevitably leads to abnormal grain growth. Meanwhile, the investigation results show that the low-firing Al2O3 ceramics have good microwave dielectric properties especially high Q × f value. A high Q × f value of 109616 GHz is able to be obtained for the 1150 °C sintered sample. The reason for the low temperature densification, abnormal grain growth behavior and the changing trend of the microwave dielectric properties are discussed in the paper.  相似文献   

9.
Temperature-stable and low-loss microwave dielectrics based on the MgO-TiO2 system with nominal formation Mgn+1TinO3n+1 (n = 5, MT) were prepared via the conventional solid-state reaction method. Ca0.8Sr0.2TiO3 (CST) was chosen as a τf compensator for matrix MT to form the composite ceramics (1-x)Mg6Ti5O16-xCa0.8Sr0.2TiO3 (0.10 ≤ x ≤ 0.26, MT-CST). The effects of CST additions on the phase composition, defect relaxation behavior, and microwave dielectric properties of MT were investigated. It revealed that undoped MT was basically consisted of MgTiO3 as a major phase and Mg2TiO4 as a minor phase, and such two phases coexisted well with CST additions. Interestingly, τf could be tuned close to zero (?1.28 ppm/°C) for the MT-CST ceramics at x = 0.22, accompanied with a high Q×f value ~ 74,200 GHz and a proper εr ~ 20.25 (9.90 GHz). These materials possessed a good potential for applications in microwave components and devices. Meanwhile, significant relaxation phenomena were observed in all the MT-CST samples using dielectric spectroscopy and thermally stimulated depolarization current (TSDC) techniques. The oxygen-vacancy-related defects, shown as (TiTi)-(VO??) dipoles and VO??, were the main types of defects in MT-CST, which was responsible for the relaxation behavior; meanwhile, the defect concentrations increased with the increase of CST content, thus resulting in the increase of dielectric loss at low and high frequencies.  相似文献   

10.
BaZr0.35Ti0.65O3 (BZT) ceramics have been fabricated via a traditional ceramic process at a relatively low sintering temperature using liquid-phase sintering aids B2O3 and Li2O. The dielectric properties of BZT ceramics have been investigated with the emphasis placed on the dielectric properties under an applied dc electric field. The temperature-dependent dielectric constant reveals that the pure BZT and B2O3–Li2O-doped BZT ceramics all have a typical relaxor behavior and diffuse phase transition characteristics. The temperature-dependent dielectric constant under the applied dc electric field shows that the Curie temperature is slightly shifted to higher temperature and the peaks are suppressed and broadened. The dielectric loss is still under 0.005 and tunability is above 20% at an applied dc electric field of 30 kV/cm.  相似文献   

11.
《Ceramics International》2022,48(6):7441-7447
Ce2[Zr1-x(Zn1/3Nb2/3)x]3(MoO4)9 (CZ1-x(ZN)xM) (x = 0.02–0.08) compounds were successfully prepared to scientifically examine the effect of (Zn1/3Nb2/3)4+ doping on phase composition, microstructures, and properties. The XRD results showed that all compounds formed a pure phase with the space group of R-3c. SEM results indicated that all compounds were compact at 675 °C, and the lattice parameters and average grain size decreased with doping. Performance analysis illustrated that εr was closely related to the polarizability, and Q?f was affected by the lattice energy of the Mo–O bond. The τf was maintained at an excellent level. Far-infrared analysis indicated that the major dielectric contribution to CZ1-x(ZN)xM ceramics was related to the absorption of phonon oscillation. The optimum properties (εr = 10.72, Q?f = 59,381 GHz, τf = ?11.48 ppm/°C) were obtained when x = 0.04.  相似文献   

12.
A series of high-k Ba4Nd28/3Ti18-yGa4y/3O54 (0≤y≤2, BNTG) ceramics with temperature stable and ultra-low dielectric loss were synthesized via the conventional solid-state reaction. The main phase of all BNTG ceramics demonstrated an orthorhombic tungsten-bronze structure, but the impurity phase (gallium-rich phase) was found in BNTG (y = 2) ceramic. Partial substitution of Ga3+ for Ti4+ in B-site was a valid method to improve the temperature stability and dielectric loss of BNTG ceramics. The variation of εr values of BNTG ceramics was dominated by the ionic polarizability. The ultra-low dielectric loss (ultra-high Q × f values) was associated with grain size, suppression of Ti3+ and impurity phase. The decrease of TCF values was highly dependent on the tilting of Ti-O octahedra and impurity phase. Finally, outstanding combination dielectric characteristics were achieved for BNTG microwave ceramics at y = 1.5 (εr = 72.8, Q × f = 14,600 GHz, TCF=+4.1 ppm/°C) and at y = 2 (εr = 70.3, Q × f = 15,500 GHz, TCF=+3.9 ppm/°C).  相似文献   

13.
Ceramics in the system BaO-Li2O–Nd2O3–TiO2 (BNT–LNT) were prepared by the mixed oxide route. Powders were mixed, milled, calcined and sintered at 1475°C for 4 h. Fired densities decreased steadily along the series from BNT to LNT. The microstructures of samples rich in BNT were dominated by small needle-like grains; the LNT samples comprised larger (6 μm) cubic grains. X-ray diffraction showed that there was a transition from orthorhombic BNT to cubic LNT; small amounts of LNT could be accommodated in BNT, but between 10–20% LNT there was the development of the second phase. Small additions of LNT led to a small increase in relative permittivity, but decreased the dielectric Q-value (from the maximum of 1819 at 4 GHz). As BNT and LNT exhibit negative and positive temperature dependencies of permittivity respectively, the addition of 10–20% LNT to BNT should yield samples with zero temperature dependence of r Impedance spectroscopy showed that data could only be acquired at elevated temperatures for BNT rich samples (above 500°C), but at modest temperatures (less than 100°C) for the more conductive LNT.  相似文献   

14.
Low-firing (Zn0.9Mg0.1)1?xCoxTiO3 (x = 0.02–0.10) (ZMCxT) microwave dielectric ceramics with high temperature stability were synthesized via conventional solid-state reaction. The influences of Co2O3 substitution on the phase composition, microstructure and microwave dielectric properties of ZMCxT ceramics were discussed. Rietveld refinement results show the coexistence of ZnTiO3 and ZnB2O4 phases at x = 0.02–0.10. (Zn0.9Mg0.1)1?xCoxTiO3 ceramic with x = 0.06 (ZMC0.06T) obtains the best combination microwave dielectric properties of: εr = 21.58, Q × f = 53,948 GHz, τf = ? 54.38 ppm/°C. For expanding its application in LTCC field, 3 wt% ZnO-B2O3-SiO2 (ZBS) and 9 wt% TiO2 was added into ZMC0.06T ceramic, great microwave dielectric properties were achieved at 900 °C for 4 h: εr = 26.03, Q × f = 34,830 GHz, τf = ? 4 ppm/°C, making the composite ceramic a promising candidate for LTCC industry.  相似文献   

15.
A conventional solid-state reaction was used to synthesize (1-x) Sr0.7Ba0.3Nb2O6xBaTiO3 (0.00≤x≤0.10) ceramics. The phase structure, microstructure, and dielectric and relaxor ferroelectric properties of these ceramics were investigated. Tungsten bronze structure can be observed in ceramics, and addition of BaTiO3 can make the grain size decrease and the porosity increase. The dielectric characteristics show diffuse phase transition phenomena for all samples, which were demonstrated by a linear fit of the modified Curie-Weiss law with γ varying between 1.54 and 1.88. As the BaTiO3 content increases, the transition temperature (TC) decreases gradually and has a minimum value of 37.53 °C at composition x=0.06, and the maximum dielectric constant (εmax) increases gradually from 66 to 3309 and subsequently decreases to 1625 at x=0.10. In addition, the relaxor ferroelectric properties of these ceramics at x=0.8 are consistent with the Volgel-Fulcher relationship; polarization versus electric field (P-E) loops were measured at a different temperature.  相似文献   

16.
The effects of substitution of (Zn1/3Nb2/3) for Ti on the sintering behavior and microwave dielectric properties of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (0 ≤ x ≤ 4) ceramics have been investigated. The dielectric constant (?r) and the temperature coefficient of the resonant frequency (τf) of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 ceramics decreased with increasing x. However, the Q × f values enhanced with the substitution of (Zn1/3Nb2/3) for Ti. It was found that a small amount of MnCO3-CuO (MC) and ZnO-B2O3-SiO2 (ZBS) glass additives to Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics lowered the sintering temperature from 1250 to 900 °C. And Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics with 1 wt% MC and 1 wt% ZBS sintered at 900 °C for 2 h showed excellent dielectric properties: ?r = 53, Q × f = 14,600 GHz, τf = 6 ppm/°C. Moreover, it has a chemical compatibility with silver, which made it as a promising material for low temperature co-fired ceramics technology application.  相似文献   

17.
Bo Li  Jiawei Tian  Lei Qiu 《Ceramics International》2018,44(15):18250-18255
Ca5Zn4-xMgxV6O24 (x?=?0–3) microwave dielectric ceramics with low sintering temperature were synthesized via the conventional solid-state reaction. Effects of the substitution of Mg2+ for Zn2+ on crystal structures and microwave dielectric properties were investigated. XRD and Rietveld refinement showed the solid solution single phase formed when 0?≤?x?≤?2, but a few ZnO was observed when x?=?3. Meanwhile, the lattice parameters were found to decrease monotonously with Mg content increasing. The vibration modes of Raman were confirmed and the relationship with microwave dielectric properties was analyzed. Appropriate substitution of Mg2+ improved the packing fraction, the cation ordering degree, and the Y-site bond valence, contributing to high Q×f and low | τf |. However, the εr reduced with the increasing content of Mg2+ due to the decrease of ion polarizability. Finally, the best microwave dielectric properties were achieved at x?=?2 with εr =?11.0, Q?×?f?=?66,365?GHz (at 10.0?GHz), and τf =??80.4?ppm/°C.  相似文献   

18.
The microwave dielectric properties of low-loss A0.5Ti0.5NbO4 (A = Zn, Co) ceramics prepared by the solid-state route had been investigated. The influence of various sintering conditions on microwave dielectric properties and the structure for A0.5Ti0.5NbO4 (A = Zn, Co) ceramics were discussed systematically. The Zn0.5Ti0.5NbO4 ceramic (hereafter referred to as ZTN) showed the excellent dielectric properties, with ɛr = 37.4, Q × f = 194,000 (GHz), and τf = −58 ppm/°C and Co0.5Ti0.5NbO4 ceramic (hereafter referred to as CTN) had ɛr = 64, Q × f = 65,300 (GHz), and τf = 223.2 ppm/°C as sintered individually at 1100 and 1120 °C for 6 h. The dielectric constant was dependent on the ionic polarizability. The Q × f and τf are related to the packing fraction and oxygen bond valence of the compounds. Considering the extremely low dielectric loss, A0.5Ti0.5NbO4 (A = Zn and Co) ceramics could be good candidates for microwave or millimeter wave device application.  相似文献   

19.
《Ceramics International》2021,47(19):27406-27410
Li3Mg4NbO8-basic composite ceramics were elaborated via the solid-state reaction process, in which LiF and Ba3(VO4)2 were utilized as a sintering aid and reinforcement phase, respectively. The sinterability, phase assemblage, microstructures, and microwave dielectric performances of Li3Mg4NbO8–LiF–Ba3(VO4)2 composite ceramics were thoroughly researched. The co-addition of LiF–Ba3(VO4)2 can simultaneously lower the sintering temperature and improve the thermal stability of Li3Mg4NbO8-basic ceramics. Solid state activated sintering is responsible for the low-temperature densification of the present ceramics. The coexistence of rock-salt structural Li3Mg4NbO8/Li4Mg4NbO8F and hexagonal structural Ba3(VO4)2 phases was demonstrated by the combinational XRD and SEM-EDS analysis results. The 0.65(Li3Mg4NbO8–LiF)-0.35Ba3(VO4)2 ceramics fired at 825 °C/5 h exhibited promising microwave dielectric performances: τf = 0.5 ppm/°C along with εr = 13.8 and Qxf = 68500 GHz. The good compatibility of the developed ceramics with Ag demonstrates it potential for use in LTCC technology.  相似文献   

20.
Bi(Sc1/3Mo2/3)O4 ceramics were prepared via solid state reaction method. It crystallized with an ordered scheelite-related structure (a?=?16.9821(9)?Å, b?=?11.6097(3)?Å, c?=?5.3099(3)?Å and β?=?104.649(2)°) with a space group C12/C1, in which Bi3+, Sc3+ and Mo6+ are ?8, ?6 and ?4 coordinated, respectively. Bi(Sc1/3Mo2/3)O4 ceramics were densifiedat 915?°C, giving a permittivity (εr) ~24.4, quality factor (Qf, Q?=?1/dielectric loss, f?=?resonant frequency) ~48, 100?GHz and temperature coefficient of resonant frequency (TCF)?~??68?ppm/°C. Impedance spectroscopy revealed that there was only a bulk response for conductivity with activation energy (Ea) ~0.97?eV, suggesting the compound is electrically and chemically homogeneous. Wide band dielectric spectra were employed to study the dielectric response of Bi(Sc1/3Mo2/3)O4 from 20?Hz to 30?THz. εr was stable from 20?Hz to the GHz region, in which only ionic and electron displacive polarization contributed to the?εr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号