首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
LaMgAl11O19 (LMA) coatings usually have a large amount of amorphous phase due to the rapid cooling during spraying, which will not benefit the service lifetime in aeroengine. Fortunately, the thermal cycling lifetime of LMA TBCs can be improved by heat treatment. Moreover, the hot corrosion degradation with calcium-magnesium-alumino-silicate (CMAS) attracts much attention recently. Therefore, to clarify the influence of heat treatment on CMAS corrosion behaviour, plasma-sprayed LMA coatings were isothermally heat-treated and then exposed to CMAS. Results indicate that heat treatment promoted a crystallization of LMA coatings, but the molten CMAS had completely penetrated into LMA coatings along the increased and widened vertical microcracks. It is the isotropic pores that determine the penetration kinetics of CMAS to LMA. CaAl2Si2O8 and MgAl2O4 were the predominant reaction products in the superficial layer, while Ca3La6(SiO4)6 interpenetrated with the residual LMA in the inner layer, forming a corroded bilayer for LMA coatings.  相似文献   

2.
An approach to make air plasma sprayed (APS) thermal barrier coatings (TBCs) with the enhanced strain and damage tolerance was reported, using a novel hollow spheres produced by electro‐spraying (ESP) technique. Compared with agglomerated & sintered (A&S) and hollow spherical (HOSP) yttria‐stabilized zirconia (YSZ) powders, the ESP powder showed a unique network microstructure and the TBCs exhibited a 2‐3 times longer thermal cycling lifetime. The splat morphology and the top coats microstructure were investigated. Some semi‐melted ESP particles were observed in the as‐sprayed top coat. The indentation coupled with the Raman mapping technique was employed to evaluate the strain and damage tolerance of the TBCs. The coatings deposited by the ESP powder show a lower in‐plane stiffness determined by three‐point bending tests. It is proposed that the superior performance is attributed to the lower amount of the short microcracks (0.5‐4 μm) with low angle (<45°) and the semi‐melted ESP particles remained in the YSZ top coat.  相似文献   

3.
《Ceramics International》2019,45(15):18471-18479
Suspension plasma spraying (SPS) as a relatively new spraying technology has great potential on depositing high performance thermal barrier coatings (TBCs). In some cases, however, columnar SPS TBCs show premature failure in thermal cycling test. To explain the reasons of such failure, a failure mechanism for columnar SPS TBCs was proposed in this work. The premature failure of TBCs might be related to the radial stresses in the vicinity of top coat/bond coat interface. These radial stresses were introduced by the thermal misfit and the roughness of bond coat. According to this mechanism, two architecture designs of SPS TBCs were applied to improve the thermal cycling lifetime. One was a double layered top coat design with a lamellar atmospheric plasma sprayed (APS) sub-layer and a columnar SPS top-layer. The other one was a low roughness bond coat design with a columnar SPS top coat deposited on a low roughness bond coat which was grinded before the spraying. With both designs, lifetimes of SPS TBCs were significantly extended. Especially, a lifetime even better than conventional APS TBCs was achieved with the double layered design.  相似文献   

4.
Gadolinium zirconate (Gd2Zr2O7, GZO) as an advanced thermal barrier coating (TBC) material, has lower thermal conductivity, better phase stability, sintering resistance, and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (YSZ, 6-8 wt%) at temperatures above 1200°C. However, the drawbacks of GZO, such as the low fracture toughness and the formation of deleterious interphases with thermally grown alumina have to be considered for the application as TBC. Using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS), double-layered YSZ/GZO TBCs, and triple-layered YSZ/GZO TBCs were manufactured. In thermal cycling tests, both multilayered TBCs showed a significant longer lifetime than conventional single-layered APS YSZ TBCs. The failure mechanism of TBCs in thermal cycling test was investigated. In addition, the CMAS attack resistance of both TBCs was also investigated in a modified burner rig facility. The triple-layered TBCs had an extremely long lifetime under CMAS attack. The failure mechanism of TBCs under CMAS attack and the CMAS infiltration mechanism were investigated and discussed.  相似文献   

5.
Aiming to improve the thermal shock resistance of thermal barrier coatings (TBCs), the plasma-sprayed 7YSZ TBCs were modified by selective laser remelting and selective laser alloying, respectively, in this study. A self-healing agent TiAl3 was introduced into the 7YSZ TBCs by selective laser alloying to fill cracks during thermal cycling. The thermal shock experiments of the plasma-sprayed, laser-remelted, and laser-alloyed TBCs were conducted by a means of heating and water-quenching method. Results revealed that some segmented microcracks were distributed on the surface of the laser-remelted and the laser-alloyed zones, showing a dense columnar crystal structure. After thermal shock tests, the numbers of segmented microcracks on the laser-remelted coating increased, whereas, in the laser-alloyed condition, some irregular particles formed, leading to the decreased numbers of segmented microcracks. The laser-alloyed coating exhibited the best thermal shock resistance, followed by the laser-remelted condition, with the thermal shock lifetime 3.3 and 2.7 times higher than that of the as-sprayed coating, respectively. On the one hand, both columnar grains and segmented microcracks in the laser-treated zone could effectively improve the strain tolerance of coatings. On the other hand, the oxidation products of TiAl3 under high-temperature condition could seal the microcracks to postpone the crack connection. Thus, the thermal shock resistance of the laser-treated coatings was significantly improved.  相似文献   

6.
Thermal barrier coatings (TBCs) are widely used as insulating layers to protect the underlying metallic structure of gas turbine blades. However, the thermal cycling performance of TBCs is affected by their complex working environments, which may shorten their service life. Previous studies have shown that preparing a mesh structure in the bonding layer can relieve thermal stress and improve the bonding strength, thereby prolonging the service life of TBCs. In this paper, a micromesh structure was prepared on the surface of the bonding layer via wet etching. The microstructure and failure mechanism of the micromesh TBCs after CMAS (CaO-MgO-Al2O3-SiO2) thermal erosion were investigated. Numerical simulation was combined with thermal shock experiments to study the stress distribution of the micromesh-structured TBCs. The results showed that the circular convex structure can effectively improve the CMAS corrosion resistance and thermal shock resistance of TBCs.  相似文献   

7.
《Ceramics International》2019,45(11):14366-14375
The penetration of calcium-magnesium-alumino-silicate (CMAS) is one of the most vital factors inducing the failure of air plasma sprayed thermal barrier coatings (APS TBCs). In present study, a two-dimensional periodical model considering the microstructures in ceramic top coat (TC) is built to study the cracking behavior in the TC of APS TBCs penetrated by CMAS during the cooling process. The CMAS penetration process is considered by filling the microstructures with the same shape of CMAS. The results show that CMAS penetration into the microstructures of the TC changed the stress distribution around the microstructures and induced a mixed crack type here. A microstructure with a relatively sharper geometry will experience a more severe stress state when penetrated by CMAS. The material discontinuity due to CMAS penetration also causes a slightly higher stress level around the microstructure at the CMAS deposit/TC interface, the CMAS penetrated layer and TC/BC interface. Thus, the horizontal cracks are easier to initiate from the microstructures with sharper geometry in these three regions.  相似文献   

8.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   

9.
Degradation of thermal barrier coatings (TBCs) in gas-turbine engines due to calcium–magnesium–aluminosilicate (CMAS) glassy deposits from various sources has been a persistent issue since many years. In this study, state of the art electron microscopy was correlated with X-ray refraction techniques to elucidate the intrusion of CMAS into the porous structure of atmospheric plasma sprayed (APS) TBCs and the formation and growth of cracks under thermal cycling in a burner rig. Results indicate that the sparse nature of the infiltration as well as kinetics in the burner rig are majorly influenced by the wetting behavior of the CMAS. Despite the obvious attack of CMAS on grain boundaries, the interaction of yttria-stabilized zirconia (YSZ) with intruded CMAS has no immediate impact on structure and density of internal surfaces. At a later stage the formation of horizontal cracks is observed in a wider zone of the TBC layer.  相似文献   

10.
Novel ceramic topcoat of Gd2O3–Yb2O3–Y2O3 co-stabilized ZrO2 (GYbYSZ) thermal barrier coatings were fabricated via EB-PVD technique. The phase structural stability, phase constituent, chemical composition, morphology and cyclic oxidation of the thermal barrier coatings (TBCs) were systematically studied. Based on the XRD results, the GYbYSZ ceramics has not undergone phase transformation upon long-term annealing at 1373 K and 1523 K. Although the chemical content of the GYbYSZ ceramic coat deviates from the stoichiometric value, the coating is mostly composed of cubic phase, which is accord with the XRD pattern of the original ingot. A pyramidal-like morphology appears in the microtexture of the column tips and the measured diameters of the pyramids are about 2.5~4 μm. After thermal cycling, the surface of the coating presents a multi-layer structure, which is followed by layer-by-layer spallation. The failure zone of the ceramic coats is possible to occur the interior of the thermally grown oxide (TGO) layer, or within the top ceramic coat at the interface of bond coat/TGO layers. The degradation of GYbYSZ TBCs is primarily attributed to the accumulation and relaxation of residual stress, propagation of vertical through microcracks, the growth rumpling of TGO layer, the ridges of grain boundary and the abnormal oxidation of bond coat.  相似文献   

11.
《Ceramics International》2023,49(16):26578-26588
CaO–MgO–Al2O3–SiO2 (CMAS) corrosion poses serious hidden dangers for the application of thermal barrier coatings (TBCs). In this study, LaMgAl11O19 (LMA) and GdPO4 were mixed at molar ratios of 2:1, 1:1 and 1:2 to prepare LMA/GdPO4 materials, and the CMAS corrosion behaviours of these materials were investigated at 1300°C–1500 °C for 20 h and 40 h. It was demonstrated that temperature was the main factor influencing the corrosion behaviours and products. The materials were damaged at 1300 °C by the crystallization of CMAS melts to form CaAl2Si2O8. In contrast, the materials were corroded by CMAS melts via the reaction between CMAS and GdPO4 at 1500 °C. These results indicate that the addition of GdPO4 to LMA can improve the resistance of the LMA material to CMAS corrosion.  相似文献   

12.
《Ceramics International》2019,45(14):17409-17419
In order to explore the difference of CMAS corrosion resistance in high temperature and rainwater environment of single-layer and double-layer thermal barrier coatings (TBCs), and further reveal the mechanism of CMAS corrosion resistance in above environment of double-layer TBCs modified by rare earth, two TBCs were prepared by air plasma spraying, whose ceramic coating were single-layer ZrO2–Y2O3 (YSZ) and double-layer La2Zr2O7(LZ)/YSZ, respectively. Subsequently, CMAS corrosion resistance tests at 1200 °C and rainwater environment of two TBCs were carried out. Results demonstrate that after high temperature CMAS corrosion for the same time, due to phase transformation, the volume of YSZ ceramic coating in single-layer TBCs shrank and surface cracks formed, which would lead to coating failure. When LZ ceramic coating of double-layer TBCs reacted with CMAS, compact apatite phases and fluorite phases formed, the penetration of CMAS into ceramic coating was inhibited effectively. Raman analysis and calculation results show that both of the surface residual stress of ceramic coating in two TBCs were compressive stress, and the residual stress of ceramic coating in double-layer TBCs were smaller than that of single-layer TBCs. Atomic force microscopy of TBCs after CMAS corrosion show that surface of double-layer TBCs was more uniform and compact than that of single-layer TBCs. The electrochemical properties in simulated rainwater of two TBCs after high temperature CMAS corrosion showed that double-layer TBCs possessed higher free corrosion potential, lower corrosion current and higher polarization resistance than those of single-layer TBCs. Consequently, the presence of LZ ceramic coating effectively improved CMAS corrosion resistance in high temperature and rainwater environment of double-layer TBCs.  相似文献   

13.
《Ceramics International》2016,42(11):12922-12927
The single-ceramic-layer (SCL) Sm2Zr2O7 (SZO) and double-ceramic-layer (DCL) Sm2Zr2O7 (SZO)/8YSZ thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying on nickel-based superalloy substrates with NiCoCrAlY as the bond coat. The mechanical properties of the coatings were evaluated using bonding strength and thermal cycling lifetime tests. The microstructures and phase compositions of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results show that both coatings demonstrate a well compact state. The DCL SZO/8YSZ TBCs exhibits an average bonding strength approximately 1.5 times higher when compared to the SCL SZO TBCs. The thermal cycling lifetime of DCL SZO/8YSZ TBCs is 660 cycles, which is much longer than that of SCL 8YSZ TBCs (150 cycles). After 660 thermal cycling, only a little spot spallation appears on the surface of the DCL SZO/8YSZ coating. The excellent mechanical properties of the DCL LZ/8YSZ TBCs can be attributed to the underlying 8YSZ coating with the combinational structures, which contributes to improve the toughness and relieve the thermal mismatch between the ceramic layer and the metallic bond coat at high temperature.  相似文献   

14.
The corrosion resistance to calcium-magnesium-alumino-silicates (CMAS) is critically important for the thermal barrier coatings (TBCs). High-entropy zirconate (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (HEZ) ceramics with low thermal conductivity, high coefficient of thermal expansion and good durability to thermal shock is expected to be a good candidate for the next-generation TBCs. In this work, the CMAS corrosion of HEZ at 1300°C was firstly investigated and compared with the well-studied La2Zr2O7 (LZ). It is found that the HEZ ceramics showed a graceful behavior to CMAS corrosion, obviously much better than the LZ ceramics. The HEZ suffered from CMAS corrosion only through dissolution and re-precipitation, while additional grain boundary corrosion existed in the LZ system. The precipitated high-entropy apatite showed fine-grained structure, resulting in a reaction layer without cracks. This study reveals that HEZ is a promising candidate for TBCs with extreme resistance to CMAS corrosion.  相似文献   

15.
Rare-earth (RE) zirconates, such as gadolinium zirconate (GZ), gained much attraction to be used for the next generation TBC. A double-layer and triple-layer TBC were deposited using the suspension and solution precursor high velocity oxy fuel (HVOF) thermal spray. A dense solution precursor GZ layer was intended to minimise the crack propagation from underneath, thereby inhibiting the CMAS infiltration. In the furnace cycling test, the double- and triple-layer coatings had a comparable cyclic lifetime. For the CMAS test, both the double- and triple-layer coatings were exposed to CMAS at 1250 °C for 30 mins. The CMAS deposits melted and infiltrated both coatings through the dense vertical cracks (DVCs). Interestingly, the GZ reacted with the molten CMAS to form a gadolinium apatite phase (Ca2Gd8(SiO4)6O2) that was detected in the double- and triple-layer TBC. Both the double- and triple-layer TBCs succeeded in reacting with CMAS.  相似文献   

16.
An approach to improve the lifetime of air plasma sprayed (APS) thermal barrier coatings (TBCs) by modifying the interfacial microstructure has been reported. The laser powder deposition technique was employed to fabricate the mesh structure (with the same composition as the bond coat) at the ceramic–substrate interface. After thermal cycling test, the APS TBCs with the mesh exhibited a much less spallation degree (5%–10%) compared with the reference samples without mesh (>50%), implying that the mesh is effective in impeding the crack propagation along the interface. In addition, the effect of the mesh geometry parameters, e.g., height and spacing of mesh, on the spallation degree of TBCs was also investigated. Based on the results of experiment and calculation, the optimal mesh parameters were proposed.  相似文献   

17.
Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, during aero engine operation, environmentally ingested airborne particles, which includes mineral debris, sand dust and volcanic ashes get ingested by the turbine with the intake air. As engine temperatures increase, the finer debris tends to adhere to the coating surface and form calcium magnesium alumino-silicate (CMAS) melts that penetrate the open void spaces in the coating. Upon cooling at the end of an operation cycle, the melt freezes and the infiltrated volume of the coating becomes rigid and starts to spall by losing its ability to accommodate strains arising from the thermal expansion mismatch with the underlying metal. The state-of-the-art ZrO2-7-weight% Y2O3 (YSZ) coatings are susceptible to the aforementioned degradation. Rare-earth zirconates have generated substantial interest as novel thermal barrier coatings (TBC) based primarily on their intrinsically lower thermal conductivity and higher resistance to sintering than YSZ. In addition, the pyrochlore zirconates are stable as single phases at up to their melting point. La2Zr2O7 (LZ) is one among such candidates. Hence, the present study focusses on the comparison of cyclic molten CMAS infiltration behaviour of the base metal Inconel 738 (BM), the bond coat NiCrAlY (BC), the duplex YSZ, the LZ coating and a five layered coated specimen with LZ as top layer. Among those coatings mentioned above, the five layer coated specimen showed excellent CMAS infiltration resistance under thermal cycling conditions.  相似文献   

18.
Gradient thermal cycling test was performed on atmospheric plasma‐sprayed (APS) thermal barrier coatings (TBCs) with different thermally grown oxide (TGO) thicknesses. The TBCs with a thickness of TGO from 1.3 μm to 7.7 μm were prepared by controlling isothermal oxidation time of cold‐sprayed MCrAlY bond coat. The gradient thermal cycling test was performed at a peak surface temperature of 1150°C with 150°C difference across 250 μm thick YSZ with a duration of 240 s for each cycle. Results indicate that the thermal cyclic lifetime of APS TBCs is significantly influenced by TGO thickness. When initial TGO thickness increases from 1.3 μm to 7.7 μm, the thermal cyclic lifetime decreases following a power functions by a factor of about 20. It was revealed that there exists a critical TGO thickness over which the thermal cyclic lifetime is reduced more significantly with the increase in TGO thickness. Moreover, two typical failure modes were observed. The failure mode changes from the cracking within APS YSZ at a TGO thickness less than the critical value to through YSZ/TGO interface at TGO thickness range higher than the critical value.  相似文献   

19.
Calcium–magnesium–alumina–silicate (CMAS) corrosion significantly affects the durability of thermal barrier coatings (TBCs). In this study, Y2O3 partially stabilized ZrO2 (YSZ) TBCs are produced by electron beam-physical vapor deposition, followed by deposition of a Pt layer on the coating surfaces to improve the CMAS resistance. After exposure to 1250 °C for 2 h, the YSZ TBCs were severely attacked by molten CMAS, whereas the Pt-covered coatings exhibited improved CMAS resistance. However, the Pt layers seemed to be easily destroyed by the molten CMAS. With increased heat duration, the Pt layers became thinner. After CMAS attack at 1250 °C for 8 h, only a small amount of Pt remained on the coating surfaces, leading to accelerated degradation of the coatings. To fully exploit the protectiveness of the Pt layers against CMAS attack, it is necessary to improve the thermal compatibility between the Pt layers and molten CMAS.  相似文献   

20.
The main goal of the current study is evaluation and comparison of thermal shock behavior of plasma-sprayed nanostructured and conventional yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs). To this end, the nanostructured and conventional YSZ coatings were deposited by atmospheric plasma spraying (APS) on NiCoCrAlY-coated Inconel 738LC substrates. The thermal shock test was administered by quenching the samples in cold water of temperature 20–25 °C from 950 °C. In order to characterize elastic modulus of plasma-sprayed coatings, the Knoop indentation method was employed. Microstructural evaluation, elemental analysis, and phase analysis were performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffractometry (XRD) respectively. The results revealed that failures of both nanostructured and conventional TBCs were due to the spallation of ceramic top coat. Thermal stresses caused by mismatch of thermal expansion coefficients between the ceramic top coat and the underlying metallic components were recognized as the major factor of TBC failure. However, the nanostructured TBC, due to bimodal unique microstructure, presented an average thermal cycling lifetime that was approximately 1.5 times higher than that of the conventional TBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号