首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 61 毫秒
1.
采用同轴送粉等离子熔覆工艺在Q235基体上制备了多层65%Ni60A-35%WC体积梯度涂层。采用OM、SEM、EDS、XRD等研究了涂层与基体、涂层与涂层的界面及组织特征,测量了涂层的硬度(HRC)。结果表明:涂层与基体界面处元素Cr、Ni由涂层向基体扩散;靠近界面约223μm范围内基体内的晶粒尺寸约长大了1.75倍;梯度涂层内部界面上层与层枝晶交错生长,形成联生结晶;梯度涂层由下至上的组织特征为:粗大树枝晶逐渐过渡为细小杂乱无方向性的致密组织;WC颗粒周围的Ni与基体Fe互熔,形成冶金结合;梯度涂层物相成分主要由Cr2Ni3、FeCr0.29Ni0.16C0.06、Fe3Ni2、CrFe7C0.45、BNi2、WC等组成;梯度涂层内硬度(HRC)值与65%Ni60A-35%WC体积分数成正相关关系。  相似文献   

2.
激光熔覆WC-Ni基超硬梯度复合涂层的组织与性能   总被引:3,自引:1,他引:2  
利用激光宽带熔覆技术在45钢表面制备了WC-Ni基超硬梯度复合涂层.对激光熔覆层用SEM、EDS、XRD进行观察和分析.对比研究了单一熔覆层、梯度熔覆层的熔覆层形貌、缺陷状态、硬度及其分布.结果表明,单一熔覆层易出现宏观裂纹、界面处熔合差等缺陷;梯度激光熔覆层逐级过渡的结合形式缓解了应力集中,使应力合理分布.在优化的工艺参数下,通过连续控制微观结构要素,可以实现成分、组织的梯度变化,获得无气孔、无裂纹的梯度熔覆涂层.其中,梯度熔覆层组织主要是由γ-Ni、WC等相组成,涂层的硬度值从熔覆层至基体呈梯度降低趋势,外层平均硬度可达2000 HV0.1以上.  相似文献   

3.
多层预涂敷等离子熔覆TiC/Ni梯度涂层研究   总被引:2,自引:2,他引:2  
用等离子熔覆预先涂敷于碳钢表面的多层Ni60 TiC涂层,得到了无层界梯度TiC熔覆层。采用电子探针面扫描和特征X射线扫描两种方式对熔覆层主要元素的分布进行了分析,用图像分析仪对各区域的TiC含量进行了定量测试。结果表明:从熔覆层底部到顶层,TiC的粒径和含量呈梯度变化,粒径由底部的1.25~2.5μm增加到表层的15~25μm,含量由3%上升到18%,TiC的形貌由球状过渡到花瓣状、团簇状;熔覆层中的组织亦呈梯度分布:粗大柱状晶→胞状树枝晶→细小树枝晶;熔覆层中Si、Fe依次减小,而Ti、Cr依次增加,Ni分布较均匀。熔池中TiC颗粒的碰撞、粘结和表面张力偶作用对梯度熔覆层的形成起决定性作用。熔覆层内部无明显层界,但存在陶瓷相的微观不均匀性。整个熔覆层的显微硬度亦呈梯度分布。  相似文献   

4.
采用等离子喷涂技术在不同的喷涂工艺条件下制备WC-Ni涂层。采用X射线衍射(XRD)和扫描电镜(SEM)表征和观察涂层的相结构和显微组织,同时运用压痕法对涂层的显微硬度、弹性模量和断裂韧性进行测试。结果表明,等离子喷涂工艺参数对涂层的组织结构和相结构有显著影响,等离子喷涂功率增加,粒子的熔化程度增加,适当的喷涂距离下沉积形成的涂层致密;等离子功率增加,喷涂过程中会产生WC粒子的失碳,相对于W_2C相,WC_(1-x)相的增加可以同时提高涂层的显微硬度和断裂韧性;与涂层的相组成相比,致密的组织结构对涂层显微硬度、弹性模量和断裂韧性的综合性能的提高更显著。  相似文献   

5.
等离子熔覆TiC/Ni超厚梯度熔覆层的组织与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
利用等离子熔覆技术,选择适当的工艺参数,在Q235钢表面熔覆形成TiC/Ni超厚熔覆层.采用扫描电镜、X射线衍射仪、金相显微镜、显微硬度计分析测试了涂层的相、组织、成分及性能.结果表明,熔覆层厚度可达2.7 mm,无裂纹、气孔等缺陷.从熔覆层底部到表层,TiC颗粒的含量和粒径均呈梯度变化;熔覆层中的组织由界面到表层依次为:平面晶、胞状晶、树枝晶;从基体到熔覆层Fe元素含量逐渐减少,而Ni,Cr,Si元素含量则逐渐增加,TiC 颗粒呈弥散分布.熔覆层硬度最大可达800 HV,平均硬度是基体的4~5倍.  相似文献   

6.
等离子熔覆Fe基/Co-WC涂层的组织演变及性能   总被引:1,自引:0,他引:1  
采用等离子熔覆技术,在Q235钢基体上熔覆添加Co-WC的Fe基粉末,制备了连续性好,无明显气孔和裂纹的Fe基/Co-WC耐磨熔覆涂层。研究了不同Co-WC含量下熔覆层的组织演变,表征了熔覆层的显微硬度分布。结果表明,随Co-WC含量增加,熔覆层组织由柱状晶逐渐向树枝晶转变,熔覆层中开始出现Fe3W3C、Fe6W6C、Co3W3C等新相。当Co-WC含量大于35%时,在熔覆层中开始出现形貌规则的鱼骨纹组织Co3W3C,该相的显微硬度HV达10.97GPa。当Co-WC含量达到50%以上时,树枝晶消失,出现大范围的规则排列、分布均匀的鱼骨纹组织。同时,随Co3W3C体积分数的增加,熔覆层显微硬度也随之增加,当Co-WC含量大于50%时,熔覆层显微硬度HV可达9.00~9.50 GPa。  相似文献   

7.
杜海霞  徐峰  李文虎  唐玲 《热加工工艺》2012,41(18):145-146,150
利用氩弧熔覆技术,以Ti粉、C粉、Fe粉为原料在Q235钢基体表面上原位合成高硬度复合涂层.采用金相显微镜观察分析涂层显微组织,利用洛氏硬度仪测试熔覆层的硬度.结果表明:熔覆层组织由树枝晶、等轴晶组成,TiC主要分布于晶粒内和晶界处,涂层显微硬度随TiC含量的增加而增大.  相似文献   

8.
激光熔覆制备Fe基非晶化涂层的研究进展   总被引:1,自引:0,他引:1  
从Fe基激光非晶化的材料设计和制备工艺两个方面对激光熔覆制备Fe基非晶层的影响进行了分析和阐述.由于激光熔覆制备非晶涂层的工艺条件与传统的大块非晶制备方法有着很大的不同,所以由此带来了材料设计上的不同思路.另外,对于激光熔覆这种效率较高的制备方法,熔覆层的成形对熔覆层的质量至关重要:熔覆材料的流动性、抗氧化性和均匀性对最后熔覆层中非晶形成比例都有着很大影响.对目前适合激光熔覆制备Fe基非晶层的非晶体系作了详细的描述,包括Fe-Ni-B-Si-V、Fe-Co-Ni-Zr-Si-B及Fe-Zr-Ni-Al-Si-B体系等,其中除了基体Fe之外,主要的组分一般都包括了Ni,B,Si,主要是依据了Inoue的经验三原则来设计,另外考虑到材料熔覆层快速成形和抗氧化性能,加入了大量的可以降低熔点的元素以改善熔池流动性.  相似文献   

9.
应用稀土及激光熔覆工艺制备钴基合金梯度涂层   总被引:5,自引:2,他引:5  
采用稀土变质及激光熔覆工艺在 2 0号钢基体上获得了钴基自熔合金梯度组织涂层。结果表明 ,2 0 4Co合金涂层组织为均匀的亚共晶 ,其组成相包括ε Co ,Co3 B ,M2 3 (C ,B) 6,Cr2 B及Co7W6化合物 ,平均硬度为HV10 70 ,比基体 (HV180 )高HV890 ,耐磨性与基体相比提高 1.5倍。在 2 0 4Co合金中加入 0 .6 %的稀土 ,可以获得梯度涂层。其组织由亚共晶向共晶连续过度 ,与前者相比 ,组成相增加了CeCr2 B4 ,最高硬度达HV12 0 4,比原合金高 12 .3%,耐磨性与基体相比提高近 2倍 ,比原合金提高了 2 5 %。  相似文献   

10.
采用等离子熔覆工艺在不锈钢基材上熔覆镍基合金,获得了一定厚度的复合熔覆层.分析了熔覆层的显微组织、硬度和耐磨性及物相形貌和相结构等.结果表明涂层中镶嵌着大量与基体合金结合良好的WC颗粒;熔覆过程中WC颗粒发生部分溶解;涂层与基板为冶金结合;所得涂层具有较高硬度,涂层基体硬度6000 MPa,WC颗粒硬度达18 780 MPa;熔覆层的主要强化机制是WC颗粒的弥散强化和C,Cr及B等合金元素溶入γNi(Me)中产生的固溶强化.  相似文献   

11.
激光熔覆WC—Ni复合涂层的结构和性能   总被引:2,自引:0,他引:2  
研究了两种激光熔覆WC-Ni涂层,均满足柴油机飞轮的技术要求。给出了两种WC-Ni涂层的金相组织、显微硬度及X光相分析结果。WC-Ni涂层的硬化相是δ-WC、β-W2C、M^C、M12C及少量r-WC。  相似文献   

12.
选用Fe-10W-4Cr-3Ni-2Mo-4B-4Si-1C(质量比)合金粉末作为喷涂原料,采用大气等离子喷涂工艺在1Cr18Ni9Ti不锈钢基底上制备了Fe基涂层。利用扫描电镜、透射电镜和X射线衍射仪表征了粉末和涂层的相组成和微观形貌;用Olycia m3分析软件对涂层的孔隙率进行测定;用热分析系统对喷涂粉末和涂层从室温到1 173K范围的DSC曲线进行记录;同时,测定了涂层的显微硬度和结合强度。结果表明:大气等离子喷涂制备的Fe基涂层与基底的结合良好,涂层较为致密并且存在灰色氧化带组织,表现出典型的层状组织结构;涂层不但具有低的表面粗糙度和孔隙率,而且具有高的显微硬度和结合强度;所制备涂层中的非晶含量约为89.2%(质量分数),涂层中形成的晶相组织为纳米晶结构。  相似文献   

13.
以Fe、C、Ti混合粉末为原料,采用钨极氩弧熔覆技术在Q235钢表面原位合成了TiC颗粒,分析了涂层组织结构,并对影响涂层组织结构的因素进行了分析.结果表明:较佳的合金粉末成分(质量分数)为65%Fe、26.9%Ti、8.1%C,熔覆速度为5mm/s,熔覆电流为80A,氩气流量为10L/min.测试熔覆层表面硬度最高可达42.3 HRC.  相似文献   

14.
激光熔覆铸造WC—Ni基合金中WC颗粒的烧损机理与评估   总被引:2,自引:0,他引:2  
本文研究了激光熔覆金属陶瓷层中铸造WC颗粒的烧损方式和机理,证明激光熔覆过程中铸造WC颗粒主要以溶解扩散式的烧损为主,提出了评定WC颗粒烧损率的半定量公式为:  相似文献   

15.
THE TECHNOLOGY of a metal matrix composite(MMC)coating reinforced by ceramic particles oncheap metal substrates is a newly developed process.A powder alloy with a desirable composition is put onthe surface of a substrate.The powder and the toplayer of the substrate are simultaneously melted andrapidly solidified to form a dense coating and bondedtogether.Up to now,many cladding processes havebeen developed,including laser cladding'1'21,electroncladding and plasma cladding.The laser cladd…  相似文献   

16.
王文权  杜明  张新戈  耿铭章 《金属学报》2021,57(8):1048-1056
为了提高H13钢表面性能,延长其使用寿命,采用电火花沉积工艺在H13钢基体上制备了WC-Ni基金属陶瓷涂层,并分别以Ni和Mo作为过渡层制备了复合涂层.利用XRD、SEM、EDS、显微硬度计和摩擦磨损试验机分析了涂层的物相、微观组织、显微硬度和摩擦磨损性能.结果表明,WC-Ni涂层表面由溅射状沉积斑点堆积而成,横截面分为涂层区、过渡层和基体3个区域,WC硬质相弥散分布于涂层内.Ni/WC-Ni复合涂层的表面较为光滑平整,Ni过渡层的引入并未改变涂层的物相,界面处WC硬质相异常长大.Mo/WC-Ni复合涂层表面存在微细裂纹,且生成了新相Fe9.7Mo0.3.复合涂层的硬度均高于WC-Ni涂层,复合涂层的摩擦系数和磨损失重均低于基体与WC-Ni涂层,Mo/WC-Ni复合涂层具有更好的耐磨性.  相似文献   

17.
探讨了两相WC-Ni硬质合金的成分与合金密度和比磁饱和间及WC晶粒邻接度与其他显微结构参数间的定量关系。结果表明,单用磁饱和测定值难以确定合金成分,用密度测定值能精确计算确定牌号的两相WC-Ni合金的成分;用WC晶粒邻接度(或γ相平均自由程)、γ相体积分数和WC相平均晶粒尺寸中任意两个参数都能精确表征两相WC-Ni合金的结构特征,由此可定量评价WC晶粒邻接度对力学性能的影响程度;合金的维氏硬度既可用关于WC相和γ相原位硬度的混合物规则也可用与WC晶粒邻接度的正向对应关系或与γ相平均自由程的反向Hall-Petch型关系式精确表征。  相似文献   

18.
原位自生TiC颗粒增强金属基复合材料涂层的组织与性能   总被引:5,自引:2,他引:5  
以Ni60A、Ti粉和C粉为原料,采用高频感应熔覆技术。在16Mn钢表面原位合成了TiC颗粒增强镍基复合材料涂层。借助扫描电镜、透射电镜、X射线衍射仪、显微硬度计对复合涂层的组织、结构和性能进行了分析。结果表明,熔覆层与基体呈冶金结合,无裂纹、气孔等缺陷;熔覆层组织由γ-Ni、M23C3、TiC组成,TiC大部分呈方块状,少部分呈花瓣状,颗粒尺寸为0.5-1.0μm,均弥散分布于熔覆层中,涂层的显微硬度可达980-1000HV0.2。  相似文献   

19.
WC增强Fe基合金熔覆层的组织与湿砂磨损特性   总被引:1,自引:1,他引:1  
采用等离子熔覆方法在Q235钢基体上制备了WC增强Fe基合金熔覆层,研究了添加质量分数为10%~30%WC-Co对熔覆层的微观结构和湿砂磨损特性的影响。结果表明:大部分WC-Co在等离子熔覆过程中发生分解,WC-Co添加量为30%时,熔覆层主要由α-Fe固溶体、Fe6W6C、(Cr,Fe)23C6和WC相组成;熔覆层的显微组织形貌自界面结合处至涂层上部逐渐转变,即由平面晶变为树枝晶再转为胞状晶,α-Fe固溶体主要以树枝晶/胞状晶存在,而Fe6W6C、(Cr,Fe)23C6相则主要在枝晶间析出;熔覆层显微硬度均不小于800HV0.2,其湿砂磨损形式主要为磨粒磨损,且熔覆层显微硬度与抗湿砂磨损能力均随WC-Co添加量增加而增大,这主要与强化相(Fe6W6C、(Cr,Fe)23C6、WC)的含量以及固溶强化效果随WC-Co添加量增多而增大有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号