首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
磨削热和磨削温度   总被引:1,自引:0,他引:1  
磨削过程中产生的磨削热量,不仅影响工件磨削表面的质量,而且也会影响磨粒和砂轮的磨削性能,并且还会使机床产生热变形而影响工件的加工精度。因此,磨削过程中的热现象是磨削加工的一个重要问题。磨削热的产生及特点磨削时砂轮工作表面上的大量磨粒以极高的速度在被加工工件表面掠过,在切除金属的同时还发生强烈的摩擦,加上磨粒是在负前角条件下工作,无论是产生切削作用,还是发生  相似文献   

2.
一、砂轮的磨钝磨损过程在磨削过程中,由于砂轮和工件接触区域的机械、化学和热作用,砂轮工作表面状况不断发生变化。这种变化主要包括两个方面: 1、由于磨粒和工件的不断作用,其切削刃受到金属的反抗以及和金属的相互摩擦而逐渐钝化,另外,由于磨粒和工件材料之间的化学亲和作用使金属切屑粘附在磨粒表面,同  相似文献   

3.
前言 发展高速磨削可以显著地提高磨削效率,延长砂轮寿命,改善加工表面光洁度。但是人们耽心提高砂轮速度后会引起加工表面出现烧伤和裂纹,影响工件的表面质量和使用性能,这是进一步发展、应用高速磨削新工艺的顾虑。 磨削加工时金属表面热损伤的现象是由磨削表面的温度场特征所决定的。磨削过程是在比一般车、铣高10~20倍以上的速度下进行的,磨粒切入工件时,表层金属产生很大的变形和摩擦,消耗的能量使金属表层形成瞬时的热聚集,磨削区的加热速度极快,局部温度很高,  相似文献   

4.
为研究TC4合金在介观尺度下的磨削过程中切屑变形区的应力分布对切屑的形成及磨削工件表面质量的影响,基于热-力耦合理论建立了单颗磨粒磨削理论模型,并利用ABAQUS对磨削过程进行了有限元仿真分析。仿真结果表明:当磨削深度小于0.5μm时,继续减小有利于减小切屑变形区流动应力的变化幅度,从而提高工件质量;与磨粒圆锥角度相比,磨削速度对切屑变形区应力变化影响更为显著,其变化值基本保持在400MPa左右。研究结果对进一步提高工件表面质量及TC4合金的磨削性能奠定了理论基础。  相似文献   

5.
磨屑的形成     
一、磨屑的形成过程随砂轮工作表面高速运动的磨粒切入工件,其作用大致可分为三个阶段(图1),第Ⅰ阶段,磨粒仅在工件表面滑移,对工件产生挤压,使滑移轨迹下的工件材料产生弹塑性变形而强化,此时不产生切屑,称为“滑擦”。当切削进入第Ⅱ阶段时,磨粒进入工件表层,此时,磨粒与工  相似文献   

6.
实验研究结果表明,缓进给深磨时形成细而长的切屑,其比磨削能是一般磨削的5~10倍;这是由于尺寸效应和磨粒吃入工件时滑擦和耕犁作用大大增强的结果。同时,也由于砂轮—工件的接触长度较长,冷却液较难进入切削区所致。 降低比磨削能的方法之一是增大磨粒切深,这就要求砂轮具有较大的磨粒间距。选用大气孔砂轮可以满足这个要求,它有利于将冷却液带进磨削区和容纳切屑,将切屑从磨削区带  相似文献   

7.
结合剂对CBN砂轮的性能影响很大。在结合剂中掺入固体润滑剂,如PTFE(聚四氟乙烯)将有助于减少工件与砂轮接触面间的摩擦,能促进切屑的形成,使砂轮不易被切屑所堵塞,还有助于保持各个磨粒的刃口的锋利性。在韩磨削用CBN砂轮的结合剂中加入325目或更细一点的银粉,将有助于使砂轮工作面所吸收到的磨削热迅速导入基体,藉辐射和空气冷  相似文献   

8.
砂轮速度对磨削性能的影响提高砂轮速度是高速磨削的中心内容。国内外许多资料均指出,砂轮速度的提高,在单位时间内金属切除量为常数的情况下,将使切屑的平均厚度减小,异致磨削力降低和工件表面光洁度提高,并使砂轮的磨损减小,耐用度提高。如果在增加砂轮速度的同时也增加单位时间金属切除量,直到每颗磨粒的切屑厚度达到原来的厚度甚至更大一些,就可以显著地提高磨削效率。  相似文献   

9.
分析了点磨削加工表面形貌及其精度的几种影响因素.研究发现:砂轮速度和磨削深度对表面粗糙度的影响都可归结为未变形切屑厚度的改变.减小点磨削倾斜角,可以减小未变形切屑厚度,从而得到理想的表面粗糙度.加大磨削深度和轴向进给量可提高材料去除率,但会造成粗糙度增大.这可归结为砂轮有效磨粒数的减少导致工件的表面粗糙度降低.点磨削通过改变倾斜角大小来增加参与磨削的有效磨粒数,保证高材料去除率的同时获得良好表面质量.增加光磨次数和应用倾斜型砂轮都增加了磨粒和工件表面轮廓突峰的接触次数,对于改善表面粗糙度十分有益.  相似文献   

10.
吴书安  祝锡晶  郭策 《表面技术》2016,45(8):144-149
目的通过仿真研究磨削中单磨粒几何特征对切屑根部材料分离的影响,得到脆-塑转变的临界磨削参数值。方法针对Ti6Al4V合金,通过对单磨粒划擦的分析,建立热-力耦合平面仿真模型,研究切屑根部有效流动应力随单磨粒刃圆半径和磨削深度的变化情况。结果在磨粒刃口处,刃圆半径r=0.1μm时,磨削深度h≈0.02μm,出现脆-塑转变的临界现象;在h0.3μm时,可能会实现材料的塑性去除,磨削热效应对其有促进作用。刃圆半径r=1μm时,磨削深度h为0.2~3μm,有效流动应力的最小值为948.479 MPa,此时在磨粒刃口处几乎没有材料塑性流动的现象,磨削热效应不明显。刃圆半径r=10μm时,磨削深度h为2~30μm,有效流动应力的最小值为716.351 MPa,最大值为763.59 MPa,磨粒刃口处切屑以塑性流动方式产生,磨削热对其有一定的促进作用。结论仿真得出使切屑根部材料实现塑性流动的单磨粒刃圆半径、磨削深度阈值范围和脆-塑转变的临界值,同时得到磨削热效应对切屑形成的作用效果。取刃圆半径为0.1μm或者10μm左右的磨粒,适当增大磨削深度,可实现切屑根部材料的塑性流动,降低对磨粒的冲击作用,并提高磨削效率。  相似文献   

11.
砂轮修整     
砂轮表面几何形状和表面粗糙度是决定砂轮磨削性能的重要因素。在磨削过程中,由于磨削力和磨削温度等的作用,砂轮工作表面上的磨粒会逐渐地磨钝;同时,由于磨粒不均匀磨损和脱落,使砂轮工作表面失去正确的几何形状;磨削过程中产生的细小切屑还会粘附到工作磨粒的切削刃上或堵塞到砂轮工作表面的空隙中。所有这些  相似文献   

12.
在微粉金刚石磨具的制备过程中,金刚石热损伤和磨粒与结合剂间界面特性是影响磨具性能的主要因素。利用电铸与钎焊相结合的工艺把表面镀钛和未镀钛两种微粉金刚石磨料制备成磨具,并将其用于氧化铝陶瓷的磨削试验。通过对钎焊后金刚石磨粒与钎料的界面分析,磨削力、磨粒脱落率以及工件表面粗糙度的比较,探讨磨粒表面镀钛对钎焊微粉金刚石磨具性能的影响。结果表明,镀钛微粉金刚石表面镀层在钎焊过程中对微粉金刚石起到包裹隔离的作用,可以降低微粉金刚石的热损伤和石墨化;在利用两种钎焊微粉金刚石磨具磨削氧化铝陶瓷时,镀钛微粉金刚石磨具的磨削力较小,磨料的脱落率也较少,且工件表面粗糙度值更低。综合比较,磨粒表面镀钛后,可以减弱微粉金刚石的热损伤,提高磨具的磨削性能。  相似文献   

13.
利用石墨自润滑钎焊CBN砂轮和陶瓷CBN砂轮进行了高温合金GH4169磨削对比试验,采用夹丝半人工热电偶方法测量工件表面磨削温度,并运用扫描电镜、能谱仪对砂轮表面磨粒的微观形貌及元素分布情况进行分析。结果表明:在相同磨削条件下,多层自润滑钎焊CBN砂轮磨削GH4169高温合金的磨削温度比陶瓷结合剂CBN砂轮低100℃左右;砂轮表层的磨粒表面形成一层石墨薄膜,有助于减小摩擦,从而降低磨削温度。  相似文献   

14.
79.怎样保证顶砧的表面粗糙度?答:硬质含金顶砧采用金刚石砂轮加工,为了获得Ra0.4mm表面粗糙度,应从选择合理的加工路线来保证。外圆、平面加工都分为粗。精两道工序,其次选择砂轮和合理的磨削用量.见下表。硬质合金顶砧加工过程中,由于摩擦产生大量的热,为了减少磨削热对加工质量的影响,在磨削时,采用专用硬质合金磨削冷却液,以降低磨削温度和磨削阻力,起到润滑作用,同时冲走细碎的切屑和破裂或脱落的磨粒,以提高项砧表面的精度。80.怎样保证顶砧外四尺寸和外圆斜度?答:外圆尺寸控制在外圆斜度在130。加工外圆时尺寸控…  相似文献   

15.
根据超声振动辅助磨削运动简图,分析了平面磨削时砂轮对工件的相对运动关系.建立了单颗磨粒的切削模型,给出了单颗磨粒相对工件的运动方程和切削速度方程,进而推导了单颗磨粒在磨削区内的振动次数及其在磨削区内的运动路径总长度、净磨削路径总长度的计算公式.分析表明:切向超声振动辅助磨削可以得到更短的切屑,更长的切削路径长度.  相似文献   

16.
用CBN砂轮对渗碳淬火20Cr钢进行了磨削试验,研究了不同磨削深度对工件表面层硬度、残余应力、表面形貌及组织的影响.结果表明,工件表面质量是由砂轮磨削时产生的磨削力和磨削热对工件共同作用的结果,随磨削深度的增加,表层硬度逐渐降低,残余应力由压应力转化为拉应力;当磨削深度为0.15 mm时,工件严重烧伤,组织由回火马氏体转化为屈氏体,组织内部产生空洞,表面出现微裂纹.  相似文献   

17.
为研究单颗CBN磨粒高速/超高速磨削的微观机理,以随机形状CBN磨粒为模型,采用Lagrange/Euler流固耦合方法,仿真分析不同工艺参数下的CBN磨粒磨削SHK-9高速钢的过程。结果表明:CBN磨粒(124~150μm)在切削深度ap 20 μm、30 μm,切削速度120m/s时,切向磨削力达到最大,但在ap 40 μm切削深度下反而最小。随着CBN磨料粒度尺寸变小,磨削力下降明显,磨粒可以在工件表面形成更为窄密的耕犁沟痕,配合适当的磨削深度有助于提高表面磨削质量。   相似文献   

18.
目的从磨削液压力及润滑方面找到减少磨粒磨损、磨削热和降低工件表面粗糙度的方法。方法基于实际情况,将砂轮突出的磨粒分布函数和工件在磨削之前存在的粗糙度函数等效为余弦函数,对陶瓷结合剂CBN砂轮磨削45号钢而产生的流体压力和膜厚进行了分析。结果考虑砂轮和工件的表面粗糙度时,压力波动集中在中心区域,磨削区最大压力和最大膜厚明显增大。在考虑热效应的情况下,当两表面波长相等、幅值同时增大时,最大膜厚及平均膜厚增大,而幅值相等、波长增大时,润滑情况没有改善;当砂轮表面幅值波长相等且变大时,最大膜厚及平均膜厚增大,由此也可以得出当砂轮表面幅值波长不变,工件表面如此变化时结果相同;当两表面幅值和波长不相等且都成倍增大时,最大膜厚及平均膜厚增大。结论膜厚增大利于润滑时,能降低磨削温度,减少磨削烧伤和热变形,降低工件磨削后的表面粗糙度,减少非工作磨粒的磨损,减少砂轮修正次数,延长砂轮寿命。但是膜厚不会无限增大,因为磨削区域并不封闭,在实际工程中可依据此理论来确定最优解,优化磨削过程。  相似文献   

19.
高速钢的高速深磨研究   总被引:2,自引:0,他引:2  
在高速磨床上,采用CBN 砂轮,对高速钢进行了较大磨除率的深磨研究。分析了磨削力比与磨粒切削状态的关系,提出了改变磨削参数以控制磨削力比,减小砂轮磨粒与工件间的摩擦,改善加工表面质量的措施。  相似文献   

20.
李厦  王锴霖 《表面技术》2018,47(7):265-269
目的通过对比研究磨削过程中超声振动辅助缓进给磨削工件表面的温度变化,验证超声振动对磨削热的影响,为进一步研究磨削机理提供依据。方法基于磨削温度场解析模型,建立了磨削热源平均强度。运用ANSYS软件热分析模块分别对普通缓进给磨削和超声辅助缓进给磨削进行了工件表面温度场仿真,得到了不同载荷步的温度场分布以及工件表面的温度时间变化曲线,较准确地反映了磨削工件时工件表面的温度变化。结果试验和模拟表明,缓进给磨削工件时,工件表面温度较高,对工件施加超声振动后,能够有效降低磨削力,减少磨削过程中产生的热量,降低工件表面温度20%左右。结论超声振动辅助磨削工件时,由于工件高频振动导致磨粒与工件间断性接触,使磨削过程变为有规律的脉冲状断续磨削,有利于工件散热,降低了磨削温度,为避免缓进给磨削时容易出现的磨削烧伤现象提供了技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号