首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用3-(三溴新戊基)磷酸酯(SR-370)、次磷酸铝(PAH)、阻燃增效剂2,3-二甲基-2,3二苯基丁烷(DMDPB)3种物质为原料共混制备一种磷溴协效复合阻燃体系,将复配比例不同的阻燃剂添加到共聚聚丙烯中,对阻燃共聚聚丙烯材料的阻燃性能进行测试,探讨3种物质的最佳配比,并研究了该复合阻燃剂的添加量对复合材料燃烧、力学、加工等性能的影响。试验结果表明,当SR-370:PAH:DMDPB的配比为1.5:0.9:0.1时,为最佳复配比;当磷溴复合阻燃剂的添加量为2.2%(质量分数,下同)时,UL-94燃烧等级为V2。  相似文献   

2.
《塑料科技》2016,(12):77-82
以膨胀型阻燃剂(IFR)作为聚丙烯(PP)的主要阻燃剂制备了IFR/PP(20/100)阻燃体系,在此基础上,将氢氧化镁(MH)和IFR进行复配,利用氧指数、力学性能测试、热重分析、锥形量热等方法考察了MH在IFR阻燃PP中的阻燃增效作用。研究结果表明:IFR/MH/PP质量比为18:2:80时,材料能够较好地保持力学性能且氧指数最大可达31.6%;IFR/MH/PP比IFR/PP体系在热释放、烟气、CO和CO_2排放指标上数值更低,热稳定性增加,成炭率更高,材料更难点燃,火灾性能指数(FPI)提高,阻燃性能优异,火灾蔓延指数(FGI)减小,火灾危险性降低。  相似文献   

3.
李芬  罗运军  李晓萌  李杰 《化工学报》2012,63(2):653-657
引言目前,市场上基本上采用添加型阻燃剂与水性聚氨酯复配的方式对织物进行阻燃整理,这种方式具有涂层不透明、阻燃剂添加量大、耐水洗性差等缺点。而反应型阻燃水性聚氨酯可以克服这些缺  相似文献   

4.
通过热重分析,结合热分解动力学计算对磷氮协效阻燃水性聚氨酯的阻燃机理进行了研究。结果表明,含N,N-双(2-羟甲基)氨基乙基膦酸二甲酯(BHAPE)的水性聚氨酯具有良好的阻燃效果,在BHAPE质量分数为15%时,聚氨酯的氧指数达到30.4。阻燃水性聚氨酯表现出典型的凝聚相阻燃机理,BHPAE的添加没有改变聚氨酯硬段的分解机理;改性后的聚氨酯软段热分解机理函数是幂函数,其热分解模型是一维相边界反应。扫描电镜照片可见,聚氨酯表面形成致密炭层,起到隔氧隔热、抑烟的作用,从而发挥阻燃性能。  相似文献   

5.
采用熔融共混法制备出了聚丙烯(PP)/纳米氢氧化铝(nano-ATH)/有机改性蒙脱土(OMMT)纳米复合材料,研究了OMMT的加入量对PP/nano-ATH复合材料力学性能和阻燃性能的影响。结果表明,OMMT的加入,可以改善PP/nano-ATH复合材料的拉伸性能、弯曲性能和阻燃性能,但会严重损害PP/nano-ATH复合材料的冲击强度。  相似文献   

6.
利用化学方法制得一种磷/氮协效阻燃剂N,N-二亚甲基对苯磺酸基膦酸铵盐(ADBSPA),并且采用轧-烘-焙整理工艺将其对纯棉织物进行阻燃整理,以提高棉织物的阻燃性和热稳定性。ADBSPA的化学结构通过傅里叶变换红外光谱(FT-IR)进行表征。研究了ADBSPA的用量、处理时间、焙烘温度以及催化剂的用量对阻燃棉织物的垂直燃烧性能、极限氧指数值(LOI)和热稳定性的影响。实验表明,当ADBSPA用量为200 g/L、处理时间为60 min、催化剂的用量为5%(wt)以及焙烘温度为130℃时,阻燃棉织物的阻燃性能最佳。其LOI值高达29.8%,阻燃棉织物的续燃时间和阴燃时间均消失,残炭长度缩短至6.4 cm。同时通过热重(TG)测试证明,阻燃棉织物的热稳定性也较纯棉织物大大提高,在800℃保留的残炭率可达36.5%。因此,ADBSPA能够显著提高棉织物的阻燃性和热稳定性。  相似文献   

7.
作者以三氯氧磷季戊四醇、苯胺和液溴为原料合成了具有成碳结构的磷氮溴阻燃剂季戍四醇双磷三溴苯胺盐。中间体季戌四醇双磷苯胺盐能最佳合成条件为:苯胺与季戊四醇舣磷酰氯摩尔比2.4.1,反应条件80℃,反应时间2h;在此条件下,中间体能收率可达94%。产物季戍四醇双磷酸三溴苯胺盐的最佳合成条件为:溴素与中间体的摩尔比为8:1,  相似文献   

8.
本文利用自制的复合阻燃剂,经过试验发现磷-溴体系阻燃剂对PP十分有效,且两者具有协同效应。运用正交试验法,解决了复合阻燃体系中各组分的用量配比,进而探讨该体系的阻燃机理。  相似文献   

9.
为了提高苯乙烯一丁二烯一丙烯睛(ABS)/聚磷酸铵(APP)/聚对苯二甲酞乙二胺(PETA)膨胀阻燃体系的阻燃性能,将硼酸锌(ZB)、红磷(RP)添加到ABS/ APP/ PETA膨胀阻燃体系中。采用极限氧指数法、垂直燃烧法、热失重、扫描电镜探讨了不同含量协效剂ZB,RP对不同比例ABS/APP/PETA阻燃体系的协效阻燃效应。结果表明,加人协效剂使ABS/APP/PETA体系的阻燃性能得到显著提高;将2.5份(质量份,下同)ZB和4份RP加人到ABS/APP/PETA( 70/22. 5/7. 5)体系,体系的极限氧指数由未加协效剂的30%提高到41%,UL-94测试也达到V-0级;ZB提高了ABS/APP/PETA体系热稳定性和成炭率,RP能极大地促进成炭;加人ZB和RP ,阻燃体系燃烧表面能够形成更多膨胀、致密的炭层。  相似文献   

10.
磷—溴—硅膨胀阻燃体系在聚丙烯中的协同阻燃作用   总被引:1,自引:0,他引:1  
采用锥形量热仪研究了磷-溴-硅三种阻燃元素对聚丙烯(PP)释热速度、总烟产量、释热总量、一氧化碳、二氧化碳(Co、CO_2)的释放量等的影响。研究结果表明,含溴阻燃剂阻燃效果显著,但 CO 和总烟产量较高。含磷和氮的膨胀型阻燃剂的 CO 和总烟产量显著降低,但阻燃效果较差,分子筛的加入,可使磷采用锥形量热仪研究了磷-溴-硅三种阻燃元素对聚丙烯(PP)释热速度、总烟产量、释热总量、一氧化碳、二氧化碳(Co、CO_2)的释放量等的影响。研究结果表明,含溴阻燃剂阻燃效果显著,但 CO 和总烟产量较高。含磷和氮的膨胀型阻燃剂的 CO 和总烟产量显著降低,但阻燃效果较差,分子筛的加入,可使磷一溴协同体系的各项阻燃参数得到显著改善,若能将磷氮的膨胀型阻燃剂和分子筛二者结合,少加或不加六溴环卜二烷将是理想的选择。溴协同体系的各项阻燃参数得到显著改善,若能将磷氮的膨胀型阻燃剂和分子筛二者结合,少加或不加六溴环十二烷将是理想的选择。  相似文献   

11.
《塑料》2014,(6)
通过氧指数、垂直燃烧、热失重、锥形量热和电镜扫描研究了由Zn B和IFR组成的协效阻燃体系对长玻纤增强聚丙烯的阻燃性能和机理。结果表明:Zn B与IFR对LGFPP有协同阻燃效果,当Zn B的质量分数为2%时,阻燃效果最佳,材料的热稳定好,极限氧指数可以达到23.5%,垂直燃烧等级为UL94 V-1级;650℃的残炭量达到33.71%,相对于IFR/LGFPP复合体系提高了1.85%;总热释放速率相比较IFR/LGFPP复合体系下降了17.01%;热释放速率峰值为97.26 k W/m2。相对于IFR/LGFPP复合体系的PHHR值下降了13.61%。扫描电镜表明Zn B/IFR协效阻燃的LGPP可以形成颜色深、致密连续、孔洞直径较小且数目少的炭层。  相似文献   

12.
《塑料科技》2015,(7):99-104
在膨胀阻燃体系(IFR)中加入适量的协效剂,可以明显提高阻燃材料的氧指数、残炭量以及高温稳定性等,进而改善材料的阻燃效果。本文以协效剂的组成及结构为主线,综述了国内外关于在IFR阻燃体系中使用协效剂的一些研究成果。  相似文献   

13.
采用氮磷溴协效阻燃体系,利用多种阻燃机理的协同增效阻燃作用,设计开发了一种高等级阻燃丙烯腈-丁二烯-苯乙烯塑料(ABS).通过傅立叶变换红外光谱、热重分析、仪器化冲击、锥形量热仪、扫描电子显微镜等表征手段,对高等级阻燃ABS材料的力学性能、燃烧性能等进行了综合分析和研究.研究结果表明,氮磷溴体系阻燃ABS的极限氧指数达...  相似文献   

14.
《塑料》2014,(6)
通过水热法合成锡酸锌(Zn2Sn O4),将所得Zn2Sn O4作为协效剂加入聚丙烯(PP)/聚磷酸铵(APP)/季戊四醇(PER)膨胀阻燃(IFR)体系中,测试其阻燃和力学性能;并利用热重、热分析-质谱及扫描电镜等方法探索其协效阻燃机理。结果表明:添加1%锡酸锌的PP/IFR体系LOI达30.2%,并且对力学性能影响较小;热分析表明加入锡酸锌使PP/IFR体系热降解过程中最大分解温度提高,最大失重速率降低,成炭量增加,炭层致密结实,部分离子流强度也有所降低,与IFR有很好的阻燃协同作用。  相似文献   

15.
以氢氧化镁(MH)和可膨胀石墨(EG)为阻燃剂制备了阻燃聚烯烃(PO)材料,研究了三氧化钼(MoO_3)在该体系中的阻燃协效作用。结果表明:当MH添加量为40%时,阻燃PO的极限氧指数(LOI)仅为24.4%,继续加入6phr EG后,阻燃PO的LOI提高至28.2%,但不能提升材料的垂直燃烧等级。在PO/MH-EG体系中加入1 phr MoO_3后,材料的LOI达到29.5%,并通过UL 94V-0测试。此外,热重分析(TGA)和锥形量热(Cone)数据显示,MoO_3的加入可以促使材料提前交联成炭,提高材料的残炭率。与PO/MH-EG体系相比,PO/MH-EG-MoO_3阻燃材料的热释放速率峰值(PHRR)和烟释放速率峰值(PSPR)分别降低了40.98%和56.76%。  相似文献   

16.
以氢溴酸三聚氰胺盐(MHB)、聚磷酸铵(APP)、阻燃增效协同剂2、3-二甲基-2、3-二苯基丁烷( DMDPB )3种物质为原料复配成一种新型磷溴氮复合阻燃剂,将不同复配比例的复合阻燃剂添加到聚丙烯(PP)中,对阻燃PP材料的阻燃性能、力学性能及熔体流动速率进行测试,探讨3种物质的最佳复配比;并研究了该复合阻燃剂的添加量对材料阻燃性能的影响。结果表明,当MHB:APP:DMDPB的配比为10:10:1时,为最佳复配比;当磷氮溴复合阻燃剂的添加量为2.0 %(质量分数,下同)时,其极限氧指数值为30.8 %,燃烧等级为UL 94 V-1。  相似文献   

17.
磷系阻燃剂FR/APP协效阻燃PP   总被引:3,自引:0,他引:3  
采用氧指数测定仪、热重分析仪和锥形量热仪研究了磷系阻燃剂1,3,5-三(5,5-二甲基-1,3-二氧杂环己内磷酸基)苯(FR)和聚磷酸铵(APP)复配体系对聚丙烯(PP)材料阻燃性能的影响.结果表明,FR/APP提高了PP的极限氧指数(LOI)、热稳定性和残炭率,降低了热释放速率.当w(FR)为15%和w(APP)为10%复配阻燃PP时,复合材料的LOI为29.6%.阻燃级别达到UL 94 V-0级.  相似文献   

18.
在三嗪成炭剂和聚磷酸铵复配基础上,添加少量羟基锡酸锌(ZHS)作为协效剂,复配成磷-氮-锡(P-N-Sn)膨胀阻燃剂,通过热重分析(TG)、极限氧指数(LOI)、UL94测试、锥形量热仪以及扫描电镜(SEM)等测试手段,研究不同质量分数的P-N-Sn体系对PP复合材料阻燃抑烟性能及炭层结构的影响。实验结果表明,三嗪成炭剂-聚磷酸铵(TCA-APP)质量分数为26%时,阻燃PP复合材料在800℃时的残炭率提高了8.54%,最大热失重速率(MMLR)降低了44%,LOI由纯PP的18.8%提升至27.2%,UL94垂直燃烧等级达到V-0级,峰值热释放速率(pHRR)由599.79 kW/m2降至277.40 kW/m2,热释放总量(THR)由141.23 MJ/m2降至133.68 MJ/m2;ZHS的加入提升了P-N-Sn体系的阻燃和抑烟性能,添加0.5%的ZHS,残炭率提升至13.15%,SEM显示材料表面形成了致密的炭层,LOI达到32%,同时抑烟性能也得到了体现,热释放速率和总热释放量进一步降低...  相似文献   

19.
采用一种新型含磷硅高分子阻燃剂(EMPZR)与聚磷酸铵(APP)、多聚磷酸密胺(MPP)复配成膨胀型阻燃剂(IFR),并对聚丙烯(PP)进行阻燃。当APP/MPP/EMPZR质量比为15/10/15时,所制得的复合材料的氧指数达到33.0 %,垂直燃烧达到UL 94 V 0级;与纯PP相比,拉伸强度、弯曲强度和冲击强度都没有下降;热失重分析表明,阻燃PP材料在600 ℃时的残炭量为21.14 %,成炭率显著提高;扫描电镜对残炭形貌的表征以及氧指数测试前后阻燃PP材料的红外图谱分析证实了EMPZR与APP、MPP在PP中有良好的协效阻燃作用。  相似文献   

20.
分子筛在无卤膨胀阻燃体系中的协效催化作用   总被引:3,自引:0,他引:3  
考察了分子筛在自制膨胀型阻燃体系(IFR)中的协效催化作用。利用添加分子筛的IFR对聚丙烯(PP)进行阻燃。运用扫描电子显微镜、垂直燃烧仪等对膨胀阻燃PP体系的表面形态和性能进行了研究。结果表明,阻燃PP加入不同的分子筛后,燃烧级数达到V-0级,氧指数最高增加17.86%,有明显的成炭效果,可获得良好的阻燃性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号