首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用X射线衍射(XRD)、热重(TG)、压汞法(MIP)、扫描电镜分析(SEM)等现代测试技术与方法对水泥-凝灰岩-粉煤灰复合胶凝材料硬化浆体微观结构特征进行测定和分析。结果显示:凝灰岩的掺入使得硬化浆体中引入了长石、水云母及低温型石英(α-SiO2)等晶相物质,其余水化产物与纯水泥样品基本相同;含有凝灰岩的水泥硬化浆体中Ca(OH)2含量降低幅度明显小于水泥-粉煤灰二元胶凝体系;随着养护龄期的延长,复合胶凝材料硬化浆体孔隙率逐渐降低,孔径逐步得到细化,到水化180 d时,各样品中最可几孔径的分布主要集中在4.5~50 nm,浆体结构朝着对耐久性有利的方向发展;凝灰岩颗粒特殊形貌引起的形态效应和微集料填充作用在水化初期显得较为明显;相比于同掺量情况下的单掺粉煤灰体系和单掺凝灰岩体系,水泥-凝灰岩-粉煤灰三元胶凝体系的水化产物较多,越来越多的凝灰岩和水泥的水化产物包裹粉煤灰球形颗粒,并逐渐形成整体,整个浆体微观结构结合紧密。  相似文献   

2.
杨梦卉  何真  杨华美 《水利学报》2017,48(4):488-495
以占胶凝材料总量60%的石灰石粉与粉煤灰进行不同比例复掺,开展了不同胶凝材料碾压混凝土的抗压强度、抗冻性能和抗渗性能试验研究,利用水化热、扫描电镜以及压汞法对不同比例石灰石粉与粉煤灰胶凝体系的水化过程与微结构形成进行了分析。研究发现,当石灰石粉与粉煤灰总量占胶凝材料总量的60%且石灰石粉取代粉煤灰比例为50%时,由于早期石灰石粉促进水化加上粉煤灰的填充效应、后期粉煤灰的火山灰活性以及石灰石粉的密实效应,二者的耦合作用可使得碾压混凝土形成密实的微结构,获得良好的力学性能和耐久性能。  相似文献   

3.
为了探讨低水胶比(0.20)下粉煤灰复合矿粉高性能混凝土的性能,对其力学性能和微观形貌进行了实验分析。结果表明:粉煤灰混凝土早期强度低后期强度高,矿渣微粉混凝土早期强度发展迅速,两者复掺时对混凝土强度的互补较明显;粉煤灰、矿渣单掺和复掺时高性能混凝土拌和物的工作性较好,均满足泵送混凝土对工作性的要求;其颗粒表面活性的Al2O3和SiO2与水泥产生的Ca(OH)2在浆体中发生火山灰反应,生成C-S-H凝胶,细化和减少混凝土界面区域的Ca(OH)2,未水化的颗粒能够填充于混凝土,能够明显地改善混凝土的密实度,降低混凝土的钙硅比。  相似文献   

4.
混凝土的碳化就是空气中的CO_2与混凝土中的Ca(OH)_2发生以下反应: Ca(OH)_2+CO_2—→CaCO_3+H_2O 因此碳化结果PH值为之降低。钢筋混凝土中的钢筋表面有一层钝化膜。钝化膜为20—60A介子的水化氧化物(Y—Fe_2O_3·nH_2O),它是防止钢筋锈蚀的保护层,故钝化膜一经破坏或消失,钢筋即行锈蚀,作为水泥的混合材,粉煤灰是否对钢筋产生锈蚀,迄今尚无确切的意见。因此作者将南昌七里街火电厂的湿排粉煤灰加工磨细,而后对以实体积计的粉煤灰不同掺量,对混凝土强度、碳化和PH的影响从而对钢筋锈蚀的影响,进行了对比试验,取得了5年龄期试验资料,现就试验结果阐述如下;  相似文献   

5.
为了分析新型矿物掺合料对高性能混凝土界面区微结构的影响,采用层析方法进行研究。通过分别掺入不同量的钢渣、矿渣及粉煤灰,定量分析了硅酸盐水泥浆体 - 集料界面区氢氧化钙取向指数和界面区厚度的变化。试验结果表明: ( 1) 掺入 30% 矿渣粉后,界面处 Ca( OH) 2 取向比纯水泥明显下降,几乎没有取向,界面区厚度比纯水泥浆体的界面略低。掺 30% 粉煤灰后,界面处 Ca( OH) 2取向度介于纯水泥与掺矿渣粉水泥界面取向度之间,但过渡区厚度明显减小。加入 30% 的钢渣后,水泥浆体与集料的界面晶体取向明显增加,界面区厚度也明显增加; ( 2) 随钢渣比表面积增加,水泥浆体与集料界面的 Ca( OH) 2 晶体取向度及界面厚度都有不同程度的减小。当钢渣比表面积增加至600 m2 /kg 时,含钢渣浆体界面的性能已优于纯水泥浆体界面的性能; ( 3) 钢渣与矿渣粉或粉煤灰二元复合只能改善浆体与集料界面区某一方面的性能,但钢渣与矿渣粉、粉煤灰三元复合可明显改善浆体与集料界面的综合性能。研究结果可为高性能混凝土整体性能研究及设计提供参考意见。  相似文献   

6.
在中国西部部分地区的水电工程建设中,传统矿物掺合料短缺,开展混凝土新型材料(如石粉)的工作性能研究很有必要。以掺砂板岩石粉多元胶凝体系为研究对象,研究了掺砂板岩石粉对胶凝体系热学、力学及收缩性能的影响,结合扫描电镜(SEM)和综合热分析仪(TG-DSC)分析了掺砂板岩石粉胶凝体系的水化产物及反应程度。试验结果表明:(1)掺入15%~55%砂板岩石粉的胶凝体系其水化热和强度小于纯水泥胶凝体系,且掺量越高,水化热和强度降幅越大;(2) 3~28 d掺砂板岩石粉的水泥胶砂强度增长明显,90~180 d强度增长缓慢;(3)掺砂板岩石粉的胶凝体系其自收缩变形可分为快速增长段(0~8.5 h)和缓慢增长段(8.5~60.0 h),适宜掺量砂板岩石粉的掺入有助于降低胶凝体系的自收缩变形,单掺35%砂板岩石粉的净浆体系自收缩减小17.6%;(4)砂板岩石粉对水泥熟料早期水化的加速效应明显,砂板岩石粉与硅粉复掺时,水泥熟料早期水化加速效应最为显著,且强度与水化热均高于单掺砂板岩石粉或复掺砂板岩石粉和粉煤灰的胶凝体系,可作为混凝土新型掺和料替代方案。  相似文献   

7.
《人民黄河》2016,(7):92-94
针对胶凝砂砾石材料水泥用量少、粉煤灰掺量多的特点,研究低水泥用量和粉煤灰掺量对材料前期、后期强度的影响规律。通过对不同水泥用量、粉煤灰掺量和不同龄期的胶凝砂砾石材料进行试验研究,得到不同胶凝材料用量下的强度区间,以及粉煤灰的最优掺量和粉煤灰掺量对材料后期强度的影响规律等。水泥用量每增加10 kg/m3,材料抗压强度可提高15%~20%。粉煤灰掺量占胶凝材料总量(水泥+粉煤灰)的50%为最优掺量,此时强度出现峰值;掺量占胶凝材料总量(水泥+粉煤灰)的40%左右为经济掺量,即掺入粉煤灰提高材料强度的效率最高。在胶凝砂砾石材料中,粉煤灰掺量的增加对其抗压强度有提高作用,其中对前期(28 d)强度影响较小;粉煤灰用量每增加10 kg/m3,后期(90 d)强度提高幅度为5%~18%,其影响随着砂率的增大而减小。  相似文献   

8.
机制砂破碎生产过程排放的大量石粉副产物,亟待资源化处理。【目的】为了就地利用石粉废弃物,【方法】探讨了片麻岩机制砂干法生产中回收的废石粉不作磨细处理而直接应用于混凝土中的技术可行性,研究了石粉以内掺作掺合料替代水泥、替代粉煤灰和外掺替代机制砂作细集料3种掺入方式在掺量为5%~20%下分别配制的混凝土工作性、力学性能和抗氯离子渗透性,并通过水化量热仪、扫描电镜、压汞仪等分析了石粉掺量对水泥水化和混凝土微结构的影响。【结果】结果显示:片麻岩石粉掺入量的增加,会增大混凝土达到等工作性所需减水剂掺量;石粉内掺代水泥对混凝土的抗压、劈拉强度和弹性模量及抗渗性具有降低作用,而石粉内掺代粉煤灰在掺量5%或外掺代砂在掺量10%时,混凝土的各项力学性能和抗渗性均达到最佳;10%石粉的掺入轻微促进了水泥的早期水化,5%石粉替代粉煤灰改善了混凝土的孔结构。【结论】结果表明:片麻岩石粉在混凝土中的利用应首先考虑替代粉煤灰,掺量以胶凝材料的5%~10%为宜,其次为外掺代砂,适宜掺量为胶凝材料的10%~15%,而片麻岩石粉不宜用以替代水泥。  相似文献   

9.
胶凝材料水化放热是造成大体积混凝土温度裂缝的主要原因之一,工程中多采用低热水泥或掺加矿物掺和料的普通水泥基胶凝材料的方法降低水化热,而目前关于二者水化放热规律的对比研究较少。为此,采用电阻率测定仪对普通硅酸盐水泥与低热水泥的电阻率进行测量,对比分析两者在水化进程、水化速率、水化放热量、水化加速期与减速期持续时间方面的规律;同时,采用直接法,对不同掺量粉煤灰、矿渣条件下,普通硅酸盐水泥基胶凝材料与低热硅酸盐水泥的水化热进行了测试和对比分析。  相似文献   

10.
高钛矿渣-水泥复合胶凝材料体系的水化机理研究   总被引:1,自引:0,他引:1  
采用SEM,XRD,TG-DSC等微观测试手段,探讨掺高钛矿渣-水泥复合胶凝材料体系的水化机理。研究结果表明:高钛矿渣主要由结晶性强的稳定矿物组成,水化活性低;高钛矿渣颗粒分散并填充水泥颗粒,明显改善浆体结构。水化反应早期,硬化浆体结构疏松,水化产物较少,有大量未被反应的稳定晶相。反应后期,Ca(OH)2参与二次水化反应,强度稳定增长。  相似文献   

11.
高性能混凝土配制的关键技术即混凝土胶凝材料体系的优化设计,合理的胶凝材料搭配比例不仅有利于改善混凝土和易性,对于不同龄期混凝土抗压强度的改善也具有积极作用。优质矿物掺合料在引入过程中由于二次水化形成水化产物填充结构,对于混凝土抗渗性能提升显著,同时避免混凝土收缩导致的裂缝问题出现。结合某大坝出现混凝土配合比设计不合理导致的和易性差以及实体强度较低等质量问题,在胶凝材料选取方面引入品质优异的粉煤灰、矿粉、硅灰,改善混凝土和易性及不同龄期抗压强度。当粉煤灰掺量为20%、硅灰掺量为3.6%时,混凝土整体和易性改善明显;混凝土倒筒时间达到3.5 s,初始扩展度达到680 mm,1 h扩展度达到675 mm,2 h扩展度达到680 mm。  相似文献   

12.
该文以晋江市防洪工程试验段(晋江溜滨水闸至晋江大桥堤段)为例,采用室内试验法和现场试验法研究掺入碱性外掺剂Ca(OH)_2对弱酸性软土水泥土工程性质的改善状况。在实验室制作不同Ca(OH)_2掺量的弱酸性软土水泥土试样,测试其重度、无侧限抗压强度、弹性模量和渗透系数,并在现场进行验证。研究结果表明:掺入Ca(OH)_2较明显地提高了弱酸性软土水泥土的工作性能,其重度随Ca(OH)_2掺量增加而略有增大,无侧限抗压强度和弹性模量随Ca(OH)_2掺量增加而增大,渗透性则降低;养护龄期增长对弱酸性软土水泥土工程性质有有利影响;淤泥质土水泥土工程性质比淤泥水泥土的略好。考虑工程性和经济性的要求,弱酸性软土水泥土中,Ca(OH)_2掺量宜控制在5%~10%。  相似文献   

13.
【目的】为了研究粉煤灰替代率影响低胶凝材料用量的自密实混凝土抗压强度以及孔结构的机理,【方法】基于可压缩堆积模型(CPM),通过正交试验测试得到不同粉煤灰替代率和胶凝材料用量情况下的自密实混凝土流动性及28 d抗压强度,并基于X射线计算机断层扫描技术(X-CT)对自密实混凝土的内部孔结构特征进行了分析。【结果】研究结果显示:提高粉煤灰替代率和胶凝材料用量可以提高自密实混凝土流动性和28 d抗压强度,粉煤灰替代率达到20%左右时28 d抗压强度达到峰值,大于20%后有所回落。此外,提高粉煤灰替代率和胶凝材料用量可以降低自密实混凝土孔隙率,改善孔隙分布均匀性,减少孔隙数量,细化孔隙,提高孔隙球形度,优化自密实混凝土内部结构。【结论】研究成果可为水利水电工程中实现低胶凝材料用量自密实混凝土的低成本、高性能、绿色环保提供理论支持。  相似文献   

14.
一、前言目前,用于筑坝用的碾压混凝土(按胶凝材料的用量和粉煤灰掺量)大致可分为以下三种类型: (1)干贫式碾压混凝土(低粉煤灰掺量碾压混凝土,称Ⅰ型)。其胶凝材料用量大约在120kg/m~3左右,其中粉煤灰为20%~30%(重量比,下同)。以日本的岛地川坝、玉川坝为代表。  相似文献   

15.
矿物掺合料在混凝土中的应用日益广泛,掺量也在不断提高,尤其在海洋环境下的混凝土中,更是发挥着极其重要的作用。研究了多元矿物掺合料掺量比例对海工混凝土性能的影响,结果表明,粉煤灰和矿粉占胶凝总量60%(比例为30%∶30%或20%∶40%)能更好发挥其复掺效果;多元矿物掺合料复合掺入配置高性能海工混凝土,可发挥多元胶凝材料的复合效应,改善其综合性能,尤其是抗氯离子渗透性。  相似文献   

16.
用电渗法及自然浸泡法测定了掺粉煤灰水泥砂浆及混凝土试件的氯离子扩散性能;用X射线衍射、扫描电镜、压汞法及氦流法测孔,观测了粉煤灰体的显微结构。结果表明,掺优质粉煤灰后经充分养护,可降低水泥砂浆和混凝土试件的氯离子扩散性。电渗法的实验结果与试件的氯离子有效扩散系数之间具有良好的相关性。粉煤灰效应引起的Ca(OH)_2含量下降和孔结构的封闭堵塞是氯离子扩散性下降的主要原因。  相似文献   

17.
本文通过对胶凝砂砾石材料在不同龄期、不同粉煤灰掺量和水泥用量下的抗压强度变化进行试验研究,得到水泥、粉煤灰等材料掺量对胶凝砂砾石材料强度的影响程度,从而得出水泥、粉煤灰的最优掺量。试验结果显示:在材料中掺入粉煤灰,材料强度提高的效果最好,但粉煤灰对材料前期的强度影响较小;而且随着砂率的增大粉煤灰对材料抗压强度的影响减小。最优用水量为80~120kg/m~3,且随胶凝材料掺量和砂率的增大而增大;最优水胶比为0.87~1.41,随胶凝材料用量和龄期的增加最优水胶比都呈减小趋势。  相似文献   

18.
老江底水电站工程地下水质类型为典型的煤系水,硫酸盐含量高,该地下水与水泥熟料矿物C2S和C3S的水化产物Ca(OH)2反应生成CaSO4,而CaSO4又与熟料中C3A的水化产物发生化学反应生成硫铝酸钙,产生体积膨胀和结晶压力,从而造成水泥石开裂,对水工混凝土及其建筑物造成严重危害,影响工程混凝土质量和使用寿命。为此,笔者通过大量的试验研究,采用抗硫酸盐水泥并掺入优质粉煤灰,优化混凝土配合比和水胶比,提出混凝土的正确捣实方法和湿养护措施,确保了工程混凝土的施工质量。  相似文献   

19.
通过测定掺凝灰岩石粉和VF防裂剂的水泥浆体的凝结时间和化学结合水量,研究了凝灰岩石粉和VF防裂剂对水泥浆体水化特性的影响,并采用X射线衍射技术(XRD)分析了其影响机理.结果表明:凝灰岩石粉在水泥水化前期起惰性填料作用,减缓水泥净浆的凝结,降低水泥浆体化学结合水量,在水化后期与水化产物Ca(OH)2发生二次反应,提升水泥浆体化学结合水量增长速率;VF防裂剂与水泥水化产物Ca(OH)2反应生成钙矾石,有利于水化产物间相互搭接,从而起促凝作用,并且VF防裂剂对凝灰岩石粉中的活性SiO2,Al2O3起化学激发作用,进一步提升水泥浆体后期化学结合水量增长速率.  相似文献   

20.
混凝土易受硫酸盐侵蚀破坏。为了提高混凝土的抗硫酸盐侵蚀性能,采用锂渣制备混凝土,对试件进行硫酸盐侵蚀试验。结果表明,在硫酸盐侵蚀下,锂渣掺量在40%以内时,锂渣复合水泥基材料的抗侵蚀系数均在1.0以上,但若掺量增加到60%,其侵蚀系数逐渐降低,甚至低于0.85。这主要是锂渣替代水泥掺入后,不仅减少了水泥中C_3S、C_2S和C_3A的含量,还能参与二次反应,进而减少了水泥水化产物Ca(OH)_2和CAH的数量,同时部分非活性的锂渣能填充于孔隙中,提高了水泥基材料的密实度,即减少了硫酸盐溶液的侵蚀通道。因此,锂渣能改善混凝土抗硫酸盐侵蚀的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号