首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
基于三相变四相变压器的新型同相牵引供电系统   总被引:8,自引:1,他引:8  
电气化铁道牵引供电系统三相严重不平衡,存在大量的谐波和无功;各供电区段需要用分相绝缘器分断,制约了高速、重载铁路的发展。该文提出的基于三相变四相变压器的新型同相牵引供电系统,不但可以解决以上问题,而且具有省自耦变压器,平衡变换装置结构简单、易控制、平衡效果好,变流器各桥臂负荷均衡,通信防护效果好,综合经济技术性能优越,工作可靠等优点;文中讨论了平衡变换原理,给出了补偿电流检测与有源滤波器控制方法。分析和仿真证明提出的平衡方式、检测与控制方法是正确的,同相供电系统方案是可行的。  相似文献   

2.
基于YN-vd接线变压器的新型同相牵引供电系统   总被引:4,自引:1,他引:4  
提出了由一种YN-vd接线平衡变压器和平衡变换装置BCD(Balance Converting Device)构成的铁道牵引系统同相供电方案.平衡变换装置由2个电压型单相有源滤波器构成,用以补偿负载的无功和谐波电流,以及变压器2个副边绕组的不平衡电流.无论牵引负载的性质及负荷的分布情况如何,经过变换之后,变压器的输入侧都表现为三相对称的纯阻性负载.分析了系统的结构和工作过程,提出了单相有源滤波器的状态优化控制方法.以一列满载运行的机车为对象,进行了供电系统的软件仿真研究,仿真结果证实了系统结构和控制方法的正确性.  相似文献   

3.
由单台YN,d11-27.5(110kV/27.5kV)接线变压器加有源滤波器构成的同相AT牵引供电系统,可以节省变压器,取消分相绝缘器;通过控制有源滤波器,能实现消除三相不平衡、补偿无功和动态滤除谐波,并使变压器容量得到充分利用。针对该同相供电系统,分析补偿电流的实时检测技术以及对平衡补偿装置的控制方法,并基于Matlab/Simulink建立同相AT供电系统的仿真模型,对仿真结果进行分析。  相似文献   

4.
新型同相牵引供电系统方案   总被引:5,自引:2,他引:5  
针对电气化铁道牵引供电系统存在大量的负序、谐波、无功,以及相邻供电区段分相绝缘器引起的列车速度和牵引力损失等问题,将YN,vd平衡变压器和综合潮流控制器(IPFC)有机结合,构成新型同相牵引供电系统。该系统基本消除了三相不平衡,并使谐波含量尽可能好,从根本上解决了铁道部门与电力部门的主要矛盾。取消电分相环节,顺应了客运高速化、货运重载化的时代趋势。讨论了同相供电系统的结构、平衡变压器的性能,并分析了IPFC的结构、平衡变换原理以及控制策略。仿真结果验证了该方案的可行性。  相似文献   

5.
电气化铁道牵引供电系统存在的分相绝缘器,制约了高速重载铁路的发展。将V,v接线变压器与综合潮流控制器(IPFC)相结合,构造出的新型同相牵引供电系统。通过检测得到综合补偿电流并以此为参考,采用基于不定频滞环优化SVPWM电流控制方法,控制综合潮流控制器基本消除三相不平衡,并滤除谐波和无功。以一列满载运行的机车为对象,进行仿真研究,仿真结果验证了系统结构,检测方法以及控制方法是正确的,同相供电系统方案是可行的。  相似文献   

6.
李猛  金钧 《电气技术》2009,(4):41-43
当前牵引供电系统均采用异相供电技术,各供电区段需要用分相绝缘器分隔,电力机车在运行中会出现停电过分相区和带电闯分相区的情况,严重影响了电气化铁路高速、重载的发展,而且电气化铁道的牵引供电系统三相严重不平衡,存在大量的谐波和无功。本文就是针对现有的问题提出了一种新型的牵引供电系统,其中对整流部分进行了设计,有效解决了三相不平衡运行,实现了同相供电,解决了过电分相等问题。并建立PWM整流控制系统的Simulink仿真模型,进行仿真分析,结果表明该设计是可行的。  相似文献   

7.
针对电气化铁道牵引供电系统存在大量的负序、谐波、无功,以及相邻供电区段分相绝缘器引起的列车速度和牵引力损失等问题,基于既有V型接线牵引供电系统,提出了一套同相供电系统的改造方案。在分析综合补偿原理的基础上,提出基于无锁相环的电流检测方法,建立综合潮流控制器容量模型及电能质量模型,并采用双向互补瞬时比较PWM控制策略。多重化主电路结构及满意优化补偿控制策略的提出,改善了系统的技术经济性。理论推导和仿真结果验证了方案的正确性与可行性。  相似文献   

8.
为解决高速、重载电气化铁路负序、谐波和无功等电能质量问题,依据三相对称补偿理论,并结合H桥构造,提出了基于模块化级联H桥的三相—单相同相牵引供电系统。分析了系统补偿特性及工作原理,研究了直挂型"!"联结的有源补偿装置(MMCHC)拓扑结构,推导了子模块参数确定方法,并给出了系统控制策略。通过直挂补偿装置将三相牵引变压器转换为单相供电,节省了匹配变压器的容量为补偿容量的2倍。仿真表明,补偿装置在牵引和再生制动工况下均具备良好的补偿特性和动态性能,消除了牵引负荷引起的负序、谐波和无功分量,且子模块电容电压稳定在2%以内。  相似文献   

9.
根据牵引网线路边界对高频暂态量的衰减作用,提出一种基于快速总体平均经验模式分解(FEEMD)和Teager能量算子(TEO)的贯通式自耦变压器(AT)同相牵引供电系统牵引网单端功率方向保护方法。求采集到的电压电流信号故障发生时的瞬时功率,并对暂态功率进行Teager变换求得TEO波形突变点的极性来作为方向判据,判别是正向故障或反向故障;若为正向故障(区内或对侧区外),再对故障暂态电流信号进行FEEMD分解,提取故障信号的固有模态函数1(IMF1)分量,再对IMF1分量进行TEO变换,求出高频暂态电流信号的TEO谱瞬时值,然后求取其绝对值并求和,进而判断故障位于区内还是对侧区外。最终通过PSCAD/EMTDC仿真软件搭建贯通式AT同相牵引供电系统模型,在不同故障条件下进行大量仿真提取数据,仿真结果证明本方案能够有效区分区内外故障,保护牵引网线路全长。  相似文献   

10.
为了减少电气化铁路对其沿线的通信系统造成的干扰,电牵引供电系统可以采用自耦变压器供电方式。本文分析了此系统中的机车驱动谐波污染情况,建立了SS4型电力机车、牵引网及牵引变电所的模型,并通过MATLAB仿真计算出在多机条件下电力机车、牵引网及牵引变电所中的谐波电流及其谐波含量。  相似文献   

11.
邓小训  黄彦全 《电力学报》2011,26(3):181-185
平衡变换系统是同相牵引供电系统实现的核心设备,因此其保护工作显得尤其重要.针对同相供电实现的基本要求,分析了平衡变换系统的基本工作原理,并研究其运行过程中系统功率流通情况,首次提出了基于有功功率差动的平衡变换系统保护方案.利用Matlab/Simulink对平衡变换系统正常运行及区内外故障等工况进行仿真,仿真结果证明,...  相似文献   

12.
地铁牵引供电系统中多采用的是24脉波整流机组,是由两组12脉波整流机组并联组成。如果两组12脉波整流机组工作不稳定会产生大量的谐波,对地铁安全运行产生威胁。因此从整流机组的整流特性进行谐波分析,针对24脉波整流机组加入三电平有源滤波器进行谐波控制。主要对三电平有源滤波器的拓扑结构及控制算法进行深入分析和研究。最后通过仿真与实验结合说明该有源滤波器对地铁24脉波整流牵引供电系统非特征次谐波控制有一定的补偿作用。  相似文献   

13.
由于隔离变压器的副边额定电流很大,且难以选择电流互感器,因此隔离变压器很难设置灵敏的电流差动保护。为了给隔离变压器、隔离变压器与潮流控制器之间的连接电缆提供灵敏的保护,并给潮流控制器提供灵敏的远后备保护,文中从理论上分析了同相供电设备的基波输入有功功率与输出有功功率相等这一特性,并基于这一特性提出了同相供电设备有功功率差动保护方案,进而对有功功率差动保护在隔离变压器空载投入、潮流控制器启动、正常运行、外部故障、内部故障等各种工况下的动作行为进行了分析。文中还对同相供电设备有功功率差动保护的整定原则作了讨论,并给出了整定实例。实验室测试和工程现场运行测试结果表明了有功功率差动保护的正确性。  相似文献   

14.
同相牵引供电系统的补偿原理及再生制动特性   总被引:1,自引:1,他引:1  
由平衡变压器和综合潮流控制器(integrated power flow controller,IPFC)组合构成的同相牵引供电系统可解决负序电流、谐波电流、无功电流的补偿及电分相方面存在的问题,分析了该供电系统的补偿原理,比较了牵引和再生制动状态同相牵引供电系统对电力系统供电质量的影响,指出制动状态下IPFC可在不改变控制策略的情况下将能量平衡地回馈到三相电网,节约电能。仿真结果验证了同相牵引供电方案的正确性。  相似文献   

15.
三相应急电源和并联型有源滤波器复合系统   总被引:1,自引:0,他引:1  
提出了一种集三相应急电源(EPS)和并联型有源滤波器(APF)一体的复合系统.该系统应用双向PWM变换器,采用DSP数字控制技术,可以实现两方面的功能,即对负载的应急供电和对来自非线性负载的谐波和无功电流补偿.分别阐述了电路结构和控制策略两方面,计算机仿真初步证实了该系统的可行性.  相似文献   

16.
提出了一种集三相应急电源(EPs)和并联型有源滤波器(APF)一体的复合系统。该系统应用双向PWM变换器,采用DSP数字控制技术,可以实现两方面的功能,即对负载的应急供电和对来自非线性负载的谐波和无功电流补偿。文中分别阐述了电路结构和控制策略两方面,计算机仿真初步证实了该系统的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号