共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
一、前言炭纤维在高性能结构元件方面的应用受到纤维压缩性质的限制。由于沥青基炭纤维压缩强度低于PAN基炭纤维,更限制了它在这些高级领域中的应用。许多学者研究了纤维微观结构和性质之间的关系。Endo描述了沥青基Carbonic和Thornel纤维的差别。Carbonic纤维具有褶皱的层状微结构,在纤维轴向有着良好的择优定向,但它们即使在高温处理后仍然还 相似文献
3.
石油沥青基炭纤维的制备 总被引:5,自引:5,他引:5
利用元素分析、TG、DSC、FT—IR、XRD和STM等手段研究了各向同性沥青和各向异性沥青基炭纤维的不熔化、炭化和石墨化工艺过程,对不熔化过程的反应机理进行了推导,并计算出不熔化反应的动力学参数。同时还研究了石墨化过程中,纤维的力学性能和结晶参数的变化。研究结果表明,在制备沥占基炭纤维工艺过程中,各向同性沥青纤维(APF)的最佳氧的质量分数为19.63%,而各向异性沥青纤维(APF)的最佳氧的的质量分数为8.03%。各向同性沥青基石墨纤维(IPGF)的d002,Lc,La分别为0.3432nm、3.432nm和8.053nm,而各向异性沥青基石墨纤维(APGF)的d002、Lc、La分别为0.3391nm、25.69nm和53.05nm。IPGF的拉伸强度和模量分别为596MPa和58GPa,而APGF的拉伸强度和模量分别为2956MPa和632GPa。 相似文献
4.
沥青基炭纤维的制备及其表征 总被引:2,自引:0,他引:2
石油沥青在氮气氛中420℃热缩聚7h,制得软化点为295℃的炭纤维前驱体沥青.此前驱体沥青在单孔纺丝器中熔纺获得沥青纤维.将沥青纤维于空气中320℃稳定化处理,最后在氮气流中1000℃炭化制成炭纤维.应用SEM、TGA、FTIR和XRD对石油沥青、前驱体沥青、沥青纤维、预氧化纤维和炭纤维分别进行表征.发现:前驱体沥青中含有质量分数70.5%中间相组分,炭纤维具有径核结构,其最大抗拉强度为650MPa. 相似文献
5.
6.
一、引言以前的研究表明,细纤维(5.4μm)和C形炭纤维的力学性能与普通圆形纤维相比得到改善。本研究从各向同性和中间相沥青制得中空炭纤维(HOLCF),考查了这些纤维的力学性能和结构。 相似文献
7.
沥青基Y型炭纤维的熔融纺丝 总被引:1,自引:1,他引:1
本文叙述了在实验室中用氮压式单孔纺丝机及自制的Y形喷丝板,以中间相沥青为原料熔融纺制Y形沥青纤维的过程,考察了纺丝因素对纤维截面形状的影响。将沥青纤维不熔化、炭化,制得了强度较大的Y形炭纤维。 相似文献
8.
9.
10.
11.
沥青基炭纤维是以燃料系或合成系沥青原料为前驱体,经调制、成纤、烧成处理而制成的纤维状炭材料.沥青炭纤维在20世纪60年代初由日本学者大谷杉郎首先研制成功,并于1970年由日本吴羽化学工业公司进行工业化生产.此后,由于碳质中间相的发现和"液相炭化"工艺的开发,特别是美国学者Singe等人在70年代用中间相沥青制造高性能连续沥青炭纤维工艺的开发成功,使沥青炭纤维的研究开发进入了一个新的阶段.由美国联合碳化物公司(UCC)制造的以"Thornel-P"为代表的高性能级沥青炭纤维问世,标志着沥青炭纤维工艺趋于成熟,成为继聚丙烯腈基炭纤维之后又一新型炭纤维材料. 相似文献
12.
用石油系和萘系中间相沥青熔融纺制条形纤维,经不熔化与炭化处理后,制成条形炭纤维,条件炭纤维容易制备,纺丝时形成的分子取向度较高,较薄的壁厚降低了不熔化温度,缩短了不熔化时间,分子取向度的提高和纤维中缺陷的减少有产地改善了它的力学性能。 相似文献
13.
沥青基高取向带状炭纤维的制备及表征 总被引:1,自引:0,他引:1
以萘系中间相沥青为原料, 通过熔融纺丝、氧化稳定化、炭化和石墨化处理制得了表面光洁平整的高取向带状纤维, 采用红外光谱仪、元素分析仪、X射线衍射仪、拉曼光谱、扫描电子显微镜和偏光显微镜对带状纤维的组成、形貌和微观结构进行了表征. 研究结果表明: 带状沥青纤维氧化稳定化过程中生成的羧基、羰基、醚等含氧官能团在随后炭化处理过程中消失; 带状沥青纤维截面的平均宽度和厚度约为1.6mm和18μm, 经炭化和石墨化处理后收缩至1.2mm和9μm; 随热处理温度的升高, 带状炭纤维(002)晶面的衍射峰逐渐变强, 其晶体尺寸逐渐变大; 与炭化处理纤维相比, 石墨化纤维晶体结构更加完整, 沿纤维主表面的取向程度更高. 相似文献
14.
15.
16.
中间相沥青基炭纤维具有低电阻、高导热特性,是目前最具发展前景的功能型导热、散热材料,但是国内对其微观结构和性能的研究报道较少。对国外高导热中间相沥青基炭纤维的微观结构和形貌进行了分析,同时将实验室研发的不同截面形状中间相沥青基炭纤维进行比较。研究结果表明中间相沥青基炭纤维具有的高导热特性源于其内部三维有序堆积的类石墨层状结构和较为完整生长的石墨晶体。热处理温度越高,其类石墨晶体生长越完善,层片取向程度越高。与圆形截面辐射状结构中间相沥青炭纤维相比,带状截面炭纤维有效解决了劈裂问题,其石墨片层间距为0.337nm,层片堆积高度达到26.77nm,轴向热导率高于800W/(m.K)。 相似文献
17.
以脱油沥青(DOA)为碳源,氯化铁为催化剂,在氩气和氢气的混合气氛下利用化学气相沉积法(CVD)制备了不同形貌的气相生长炭纤维(VGCFs)。讨论了在温度为1100℃时,不同的反应时间(分别为10min,20min,25min,30min和40min)对产物形貌和结构的影响。利用场发射扫描电镜(FE-SEM)、高分辨透射电镜(HRTEM)、X-射线衍射(XRD)和拉曼(Raman)光谱,对不同工艺参数下合成的产物进行了结构表征。结果表明:随着反应时间的增加,气相生长炭纤维的形貌由弯曲变得相对平直,进而相互贯穿;当反应时间为10min和20min时,气相生长炭纤维的直径分布在1.0μm~1.2μm之间;当反应时间为25min,30min和40min时,气相生长炭纤维的直径分布范围分别为250nm~300nm,350nm~400nm,700nm~800nm。另外,还观察到了V型的气相生长炭纤维。 相似文献
18.
短切炭纤维增强沥青基C/C复合材料的力学性能 总被引:9,自引:7,他引:9
利用模压半炭化成型工艺在大气环境下制备出了短切炭纤维增强沥青基C/C复合材料(简称SCFRC)。研究了短切炭纤维的体积分数对SCFRC材料的体积密度和力学性能的影响规律。借助光学显微镜和扫描电镜对其微观组织和断口形貌进行了观察,分析了短切炭纤维对SCFRC材料的增强机制。结果表明,当短切炭纤维的体积分数由0%增大到11.8%时,SCFRC材料的力学性能随之呈线性增加;短切炭纤维增强SCFRC材料的机制主要有裂纹偏转效应、桥联效应以及脱粘和拔出效应。 相似文献
19.
为了提高炭纤维的高温抗氧化性能,提出了一种制备Si—B掺杂沥青基炭纤维的方法。通过聚硼硅氮烷(PSNB)和石油沥青低温共裂解合成了Si—B掺杂沥青,Si—B掺杂沥青经熔融纺丝、原丝预氧化和炭化得到Si—B掺杂沥青基炭纤维。研究了Si—B掺杂沥青及其炭纤维的组成、微观结构和低温抗氧化性能。结果表明,随原料沥青中PSNB掺杂比例的提高,Si—B掺杂炭纤维的拉伸强度和杨氏模量逐渐降低,抗氧化性能逐渐增强。1 400℃炭化得到的Si—B掺杂炭纤维在600℃氧化240 min失重率为25%,650℃氧化140 min失重率为60%。未掺杂炭纤维在相同条件下的氧化失重率分别为46%和99%。Si—B掺杂炭纤维氧化形成的B_2O_3具有较好的流动性,可以在纤维表面形成连续的玻璃膜,有效地抑制基体炭的氧化。 相似文献