首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
超声波塑料焊接的温度场是研究其焊接机理的重要方面。但是由于超声波塑料焊接具有时间短、局部焊接区域封闭等特点,使得对焊接温度场的研究很困难。采用有限元的方法,对超声波塑料焊接过程中的温度场进行了数值模拟,并建立了具有高响应频率、实时测量、数据存储功能的先进测量系统。模拟结果和实际测量结果相近,说明有限元模型合理。  相似文献   

2.
由于超声波塑料焊接具有升温速度快、局部生热、压力作用的特点使其温度场测量非常困难.文中采用基于HP VEE的温度场测量系统来测量超声波塑料焊接的温度场;并介绍了HP VEE的功能、该温度场测量系统的组成和采用该系统进行的超声波焊接PVC塑料的温度场检测试验.试验表明该系统能够高精度、快速、自动的检测超声波塑料焊接温度场.  相似文献   

3.
根据彩色CCD三基色测温原理,设计了摩擦焊接的温度场测量系统.采用CCD摄像头对焊接界面进行高速、连续拍摄,得到温度场图像,DSP对图像进行预处理后,对温度进行计算,然后使用伪彩色增强方法,通过不同颜色来反映焊接界面各部分的动态温度分布状况.为提高测量的精度,通过黑体炉实验对计算公式中的参数进行标定,并根据实验数据进行了插值修正.TMS320DM647的高速运算能力和丰富的片上资源保证了测量的实时性,伪彩色处理后的温度场图像可以方便、直观地反映出温度场的分布.  相似文献   

4.
模拟-测量结合反演焊接条件下材料热导率   总被引:1,自引:0,他引:1  
联合数值模拟与温度场测量手段,反演了LY2铝合金焊接过程的热导率数据。将热导率数据分段线性化后,采用稳态下的低温数据及外推的高温数据作为初值,将其代入有限元模型中,模拟出焊接过程的温度场。使用热电偶测量了实际情况下的温度场,并计算温度模拟与测量之间的误差。应用遗传算法,计算出了不断改变热导率初值时温度模拟与试验间误差的最小值,此时对应的热导率数值即为所求。计算结果表明,热导率随温度变化速度的不同,出现不同的滞后现象。在此基础上,给出了焊接条件下热传导材料系数随温度及温度变化速度之间关系的模型。  相似文献   

5.
运用大型有限元分析软件ABAQUS,建立了适当的模型对薄板T型TIG焊接接头的温度场进行了数值模拟。模拟中考虑了随温度变化的材料性能,考虑了模型的对流和辐射换热以及潜热的影响。采用热电偶测量了典型位置的温度场以验证模拟结果,结果表明,建立的模型能较准确地模拟薄板TIG焊的温度场。  相似文献   

6.
针对变电站中断路器特殊的应用环境,应用COMSOL软件对真空断路器简化模型进行温度场的仿真分析确立合适的监测点;选取以声表面波原理为基础,通过频率变化反应温度变化的声表面波传感器测量温度;以Zig Bee协议栈为基础,构建以Zig Bee协调器和多个终端节点为元素的无线通信网络实现温度数据的收发,设计了利用声表面波进行温度测量及Zig Bee技术组网的真空断路器温度在线监测系统。该系统具有可靠性高,易于扩展等特点。  相似文献   

7.
基于对搅拌摩擦焊接过程的划分以及相对应的热输入模型,建立了焊接全过程的温度场有限元分析模型;通过求解得到了搅拌头旋转压入阶段、初始焊接阶段、准稳态焊接阶段和焊接结束4个阶段的温度场分布,并进行了试验验证。结果表明:模拟得到的温度结果和通过热电偶法测得的温度结果比较吻合。  相似文献   

8.
搭建了基于红外方法的端面摩擦副温度场在线测量系统,在获得摩擦界面近似温度及非接触侧表面温度分布的同时获取了摩擦过程中的摩擦系数、载荷及转速等参数;通过有限元软件ANSYS建立摩擦温度场计算模型,引入红外探头获得的接触面近似温度对摩擦温度场进行了实时仿真,通过与热像仪测量温度的对比发现,二者具有较好的一致性。  相似文献   

9.
FSW传热过程直接决定工件所经历的热循环,进而影响焊接接头的微观组织和力学性能。同时温度场的分析对于预测接头残余应力和变形,以及焊缝区硬度都具有重要意义。本文在工艺研究基础上,分析了FSW的产热过程;根据搅拌头形状与尺寸,建立了FSW三维传热有限元模型。使用Ansys有限元分析软件,结合有限几个测量点温度变化的实验数据,对6 mm厚度紫铜板FSW焊接过程的温度场进行了有限元分析和计算,获得了该焊接过程的温度场分布与变化规律。计算过程中考虑了工件下表面与支撑板接触热传导对温度场的影响,以及温度对紫铜材料热传导系数的影响,有限元计算结果与实验测量结果接近。  相似文献   

10.
针对超声波焊接金属界面温度难以实时测量的问题,从能量角度建立了超声波焊接二维瞬态传热模型。利用ABAQUS计算了超声波焊接铝箔表面不同点处的温度历程,红外热像仪测量了焊接过程中铝箔表面温度历程曲线,铝箔表面最高温度计算值与实验值对比误差在5%以内,证明该模型具有良好的计算精度。再利用该模型计算了不同参数组合下超声波焊接铝箔界面的温度场,研究表明,超声波焊接铝箔界面最高温度不超过金属熔点的50%;得到了焊接界面最高温度与速度、声极振幅和法向压力的关系,其中,焊接最高温度随焊接振幅的增加而增加,随焊接速度的增加而减小。本研究结果对于揭示超声波焊接成型热过程机理及热机耦合应力过程的研究具有重要意义。  相似文献   

11.
研究焊接缺陷磁光成像检测方法,基于法拉第旋转效应,分析交变磁场下焊接缺陷磁光成像特征与漏磁场之间的关系。建立焊接缺陷的三维有限元模型,对不同类型和宽度的焊接缺陷漏磁场分布进行模拟,并在交变磁场激励下对不同焊接缺陷进行磁光成像无损检测试验,通过试验验证了焊接缺陷检测模型的有效性。研究结果表明,漏磁场分布与缺陷的类型和宽度密切相关,随着宽度增大,缺陷漏磁场的磁感应强度垂直分量亦增大;在相同宽度下,未熔合、表面裂纹、亚表面裂纹和无缺陷磁光图像灰度峰谷差值呈递减趋势,磁光图像灰度值可与漏磁场强度相匹配;所建焊接缺陷模型和磁光成像试验能有效地描述不同焊接缺陷对漏磁信号和图像灰度值分布的影响,有助于提高焊接缺陷检测和质量评估。  相似文献   

12.
多道焊三维残余应力场有限元模拟   总被引:23,自引:1,他引:23  
倪红芳  凌祥  涂善东 《机械强度》2004,26(2):218-222
运用大型有限元计算软件ABAQUS,对316L不锈钢平板多道焊接头的温度场和残余应力场进行模拟。有限元模型中选用三维实体单元,考虑材料物理性能随温度的变化和周边对流、辐射散热的影响。运用内生热的加载方法模拟焊接热源,运用单元激活技术模拟多道焊焊接过程。获得了三维多道焊焊接温度场和残余应力场,并对计算结果进行分析。  相似文献   

13.
所研制的CCD图像传感器系统,通过采用比色测温的方法,实现了对焊接温度场图像的实时采集与处理。以焊接电流为控制量,研制了薄板钨极氩弧焊(TIG)背面温度场等温线宽度闭环控制系统,实现了对焊缝背面熔宽和熔透的控制。大量的焊接工艺试验证明本系统在焊接生产中具有重要的应用价值。  相似文献   

14.
The investigation of transient temperature profiles of a weld joint produced by the laser welding process is presented. A three-dimensional finite element model is developed using a commercial finite element code ANSYS in order to obtain the behavior of temperature field and molten pool shape during the welding process. A three-dimensional conical Gaussian heat source is employed as a heat source model for performing a non-linear transient thermal analysis. The temperature-dependent material properties of AISI 304 stainless steel sheet are taken into account, which has a great influence on the temperature fields indicated by the simulation results. The effect of latent heat and the convective and radiative boundary conditions are also included in the model. A series of laser welds are performed using a 2-kW continuous wave Nd:YAG laser welding system. The experimental trials are conducted by varying the laser input parameters namely beam power, welding speed, and beam incident angle to validate the model. The results show that there is a good agreement between the finite element simulation and the experimental observations.  相似文献   

15.
通过对有限元分析方法在焊接温度场中的应用进行研究,利用ANSYS软件的APDL语言以及单元“死活”技术模拟焊接的填充过程,较好的模拟焊接加热过程及整个温度场的瞬态变化并实现了参数化编程,利用有限元分析软件ANSYS对钢板焊接温度场进行动态模拟,建立高斯函数热源模型,对各项焊接参数的合理选择和优化提供有效的参考。  相似文献   

16.
王和慧  鞠峰 《压力容器》2012,29(4):23-29
夹套是广泛运用在化工、医药等行业设备上的加热冷却装置,夹套焊缝是常常发生开裂泄漏的失效部位,焊接残余应力是导致开裂泄漏的重要因素之一。利用有限元技术对一种新型多晶硅还原炉挠性冷却夹套的焊接过程的温度场、残余应力和塑性应变场进行了数值模拟。借助ANSYS的APDL编程和单元生死技术,采用热-结构直接耦合法,传热分析采用含高斯热源的瞬态过程、应力分析为稳态,材料本构为随温度变化的双线性随动强化弹塑性模型。通过模拟获得焊缝区域残余应力和塑性应变的分布规律,为同类夹套的焊接强度评定提供了有效方法。  相似文献   

17.
研究一种基于图像质心的焊缝识别新方法.根据焊接熔池视觉图像质心算法及视觉传感器工作原理,推导并建立焊接图像质心与焊接区温度及焊缝中心关系模型.通过焊接温度场的数值化,得到图像质心与焊缝中心关系模型在一定焊接参数条件下的数值解.采用数值仿真分析模型的影响因素,结果表明焊接电流、焊接速度和焊缝宽度对模型曲线影响最为显著.在分析质心与焊缝中心数值解变化趋势的基础上,得到质心偏差与焊缝偏差的经验表达式.在此基础上,对不同焊接参数条件下的模型曲线进行最小二乘拟合,建立质心偏差模型特征参数的样本空间.然后进行多元线性回归分析,确定出经验表达模型的特征参数,从而建立质心偏差关于焊接参数为变量的实用理论模型的函数表达式.焊接工艺试验表明,依据图像质心算法可以较好地识别焊缝中心位置.  相似文献   

18.
针对任意角度焊接缺陷难以检测的问题,研究在不同磁场激励下焊接缺陷磁光成像无损检测系统。重点介绍了由U形磁轭产生的交变磁场和平面交叉磁轭产生的旋转磁场激励焊件的机理,比较了交变/旋转磁场激励下不同焊接缺陷的磁光成像效果。基于法拉第旋转效应分析磁光成像特性与磁场强度之间的关系,磁光图像的灰度值可以匹配相应的漏磁场强度。采用主成分分析法提取融合图像列像素灰度特征和通过灰度共生矩阵提取磁光图像纹理特征,建立BP神经网络模型和支持向量机模型识别这些缺陷特征。试验结果表明,在旋转磁场激励下,BP神经网络模型和支持向量机模型的分类精度分别为94.1%和98.6%,相比交变磁场,分类精度分别提高了10.7%和8.5%。旋转磁场激励下的磁光成像克服了定向检测的局限性,能够实现对任意角度焊接缺陷的检测及分类。  相似文献   

19.
超声辅助MIG焊接中超声作用特性研究   总被引:2,自引:0,他引:2  
超声辅助熔化极惰性气体保护(Ultrasonic assisted metal inert gas,U-MIG)焊是一种新型熔化极焊接方法,利用外加声场将相应声学效果引入焊接熔池达到改善接头性能的目的。通过试验系统化研究超声对电弧形态、熔滴过渡以及接头宏观形貌的作用规律,主要目标是更好地理解超声在不同焊接条件下的作用特点。对高速摄像采集的电弧数据进行处理,结果发现随电弧电压增加,超声对电弧的压缩效果也逐渐增大;而随送丝速度增加,焊接电流增大,电弧压缩效果减弱。针对熔滴受力特点分析,可以看出超声作用后熔滴会受到一个促进熔滴过渡的附加力作用。在焊接电流为200 A时,该附加力达到最大,约为2.8×10-3 N,继续增大焊接电流,该附加力逐渐降低。对比不同送丝速度时焊缝宏观形貌,结果显示为了获得更高的焊接效率不能无限提高送丝速度,存在一个最佳的参数匹配值。结合平面驻波理论分析,随温度增加,声辐射力逐渐减弱,这在一定程度上也会削弱附加力作用效果。利用熔池薄膜模型探讨电弧、熔滴过渡以及熔池振荡三者之间的关系,超声对电弧形态、熔滴过渡的影响均可改变熔池的振荡特性,这间接表现为接头形貌的改变。通过试验与理论分析,为U-MIG焊接方法进一步发展与应用打下坚实基础。  相似文献   

20.
为了研究温度对机械密封金属波纹管力学性能的影响,建立高温泵用机械密封焊接金属波纹管计算模型,利用ANSYS软件计算波片的温度场,并通过间接耦合法计算不同介质温度下的热应力与热应变场,得到温度对波纹管力学性能的影响规律.计算结果表明:在高温工况下波纹管波片内产生了较大的热应力和热应变,增大了波纹管断裂、失弹等形式的失效的危险,在设计和使用过程中必须对此引起足够重视;在高温工况下波纹管波片等效热应力、热应变的最大值均出现在波片波谷处.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号