首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an attempt has been made to evaluate the overall performance of hybrid PV/thermal (PV/T) air collector. The different configurations of hybrid air collectors which are considered as unglazed and glazed PV/T air heaters, with and without tedlar. Analytical expressions for the temperatures of solar cells, back surface of the module, outlet air and the rate of extraction of useful thermal energy from hybrid PV/T air collectors have been derived. Further an analytical expression similar to Hottel–Whiller–Bliss (HWB) equation for flat plate collector has also been derived in terms of design and climatic parameters. Numerical computations have been carried out for composite climate of New Delhi and the results for different configurations have been compared. The thermal model for unglazed PV/T air heating system has also been validated experimentally for summer climatic conditions. It is observed that glazed hybrid PV/T without tedlar gives the best performance.  相似文献   

2.
This paper presents the analytical study of flat plate collector based on the computer‐based thermal models considering two different cases, case A (fully covered by glass) and case B (fully covered by photovoltaic (PV) module). These models are developed based on energy balance equations. An analytical expression for characteristic equation for photovoltaic–thermal flat plate collector has been derived as a function of design and climatic parameters. This paper shows the detailed analysis of energy, exergy and electrical energy by varying the number of collectors by considering four weather conditions (A, B, C and D type) for five different cities (New Delhi, Bangalore, Mumbai, Srinagar and Jodhpur) of India. It is observed that the collectors fully covered by PV module combine the production of hot water in addition to electricity generation and it is beneficial in terms of exergy, thermal energy and electrical energy gain. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
In this present paper, analysis based on energy and exergy of double‐pass hybrid photovoltaic thermal (HPV/T) air collector having air flow in the opposite direction in ducts has been carried out based on initial cost, annual savings and return on investment. Choice of the location is made to cover different climatic conditions prevailing in India e.g. hot and dry climate represented by Jodhpur, warm and humid climate represented by Mumbai, moderate climate represented by Bangalore, cold and cloudy climate represented by Srinagar and composite climate represented by New Delhi. Results of single‐pass HPV/T air collector have also been compared. It is observed that electrical, thermal and exergy efficiencies of double‐pass HPV/T air collector are higher than that of single‐pass HPV/T air collector by 10–12, 40–45 and 13–17%, respectively. Further, it is observed that cost per kWh of double‐pass HPV/T air collector reduces for all the locations covered in the study when compared with cost per kWh of single‐pass HPV/T air collector. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Photovoltaic-thermal (PV/T) technology refers to the integration of a PV and a conventional solar thermal collector in a single piece of equipment. In this paper we evaluate the performance of partially covered flat plate water collectors connected in series using theoretical modeling. PV is used to run the DC motor, which circulates the water in a forced mode. Analytical expressions for N collectors connected in series are derived by using basic energy balance equations and computer based thermal models. This paper shows the detailed analysis of thermal energy, exergy and electrical energy yield by varying the number of collectors by considering four weather conditions (a, b, c and d type) for five different cities (New Delhi, Bangalore, Mumbai, Srinagar, and Jodhpur) of India. Annual thermal and electrical energy yield is also evaluated for four different series and parallel combination of collectors for comparison purpose considering New Delhi conditions. This paper also gives the total carbon credit earned by the hybrid PV/T water heater investigated as per norms of Kyoto Protocol for New Delhi climatic conditions. Cost analysis has also been carried out.It is observed that the collectors partially covered by PV module combines the production of hot water and electricity generation and it is beneficial for the users whose primary requirement is hot water production and collectors fully covered by PV is beneficial for the users whose primary requirement is electricity generation. We have also found that if this type of system is installed only in 10% of the total residential houses in Delhi then the total carbon credit earned by PV/T water heaters in terms of thermal energy is USD $144.5 millions per annum and in terms of exergy is USD $14.3 millions per annum, respectively.  相似文献   

5.
In this paper an attempt has been made to analyze the performance of semi transparent hybrid PVT double pass air collector. Based on the first law of thermodynamics, energy balance equations are for-mulated to derive the analytical expression for air temperature at the outlet, as a function of the design and climatic parameters for investigating the performance of semi transparent hybrid PVT air collector. The analysis is based on quasi-steady state condition. This paper shows the detailed analysis of energy and exergy of a semi transparent hybrid PVT double pass air collector and its comparison with single pass air collector for four weather conditions (a, b, c and d type) for five different cities (New Delhi, Bangalore, Mumbai, Srinagar, and Jodhpur) of India. It has been analyzed that if such systems are installed only at 10% of the total residential houses in Delhi, then the total carbon credits earned by the system is found to be Rs. 1767 millions in terms of thermal energy and Rs. 493 millions in terms of exergy for double pass air collector whereas Rs. 1528 millions in terms of thermal energy and Rs. 446 millions in terms of exergy for single pass air collector. The results clearly shows that hybrid PVT double pass air collector have better performance as compared to single pass air collector.  相似文献   

6.
In this paper, an exergetic optimization has been developed to determine the optimal performance and design parameters of a solar photovoltaic thermal (PV/T) air collector. A detailed energy and exergy analysis has been carried out to calculate the thermal and electrical parameters, exergy components, and exergy efficiency of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open‐circuit voltage, short‐circuit current, maximum power point voltage, maximum power point current, etc. An improved electrical model has been used to estimate the electrical parameters of a PV/T air collector. Furthermore, a new equation for the exergy efficiency of a PV/T air collector has been derived in terms of design and climatic parameters. A computer simulation program has been also developed to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Moreover, the simulation results obtained in this paper are more precise than the one given by the previous literature, and the new exergy efficiency obtained in this paper is in good agreement with the one given by the previous literature. Finally, exergetic optimization has been carried out under given climatic, operating, and design parameters. The optimized values of inlet air velocity, duct length, and the maximum exergy efficiency have been found. Parametric studies have been also carried out. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, an integrated combined system of a photovoltaic (glass–glass) thermal (PV/T) solar water heater of capacity 200 l has been designed and tested in outdoor condition for composite climate of New Delhi. An analytical expression for characteristic equation for photovoltaic thermal (PV/T) flat plate collector has been derived for different condition as a function of design and climatic parameters. The testing of collector and system were carried out during February–April, 2007. It is observed that the photovoltaic thermal (PV/T) flat plate collector partially covered with PV module gives better thermal and average cell efficiency which is in accordance with the results reported by earlier researchers.  相似文献   

8.
In this communication, an attempt has been made to evaluate energy and exergy analysis of a hybrid micro-channel photovoltaic thermal (MCPVT) module based on proposed micro-channel solar cell thermal (MCSCT) under constant mass flow rate of air in terms of design and climatic parameter. The performance in terms of overall annual thermal and exergy gain and exergy efficiency of micro-channel photovoltaic thermal module have been evaluated by considering four weather conditions for different climatic conditions of India. Further analysis has also been carried out for single channel photovoltaic thermal (SCPVT) module and the results of micro-channel photovoltaic thermal module and single channel photovoltaic thermal module have been compared.On the basis of numerical computations, it has been observed that an overall annual thermal and exergy gains have been increased by 70.62% and 60.19% respectively for MCPVT module for Srinagar climatic conditions. Similar observations have been made for Bangalore, Jodhpur and New Delhi.  相似文献   

9.
In this communication, an attempt has been made to evaluate the theoretical performance of a glazed hybrid micro-channel solar cell thermal (MCSCT) tile. Experiment has been performed in indoor condition and it has been observed that there is good agreement between theoretical and experimental values with correlation coefficient and root mean square percentage deviation in range of 0.995–0.998 and 3.21–4.50 respectively. Effect of design parameters on different combination (series and parallel) of glazed hybrid MCSCT tile for Srinagar climatic condition, India has also been evaluated. The theoretical results of glazed hybrid micro-channel photovoltaic thermal (MCPVT) module for 75 Wp have been compared with the result of single channel photovoltaic thermal (SCPVT) module. The average value of electrical and thermal efficiency of glazed hybrid MCPVT module are 14.7% and 10.8% respectively which is significantly higher than SCPVT module. The overall annual exergy efficiency based on second law of thermodynamics has also been evaluated at different mass flow rate for glazed hybrid MCPVT module for Srinagar climatic condition. It has been observed that maximum overall exergy efficiency is 20.28% at 0.000108 kg/s mass flow rate.  相似文献   

10.
In this paper, a study is carried out to evaluate the annual thermal and exergy performance of a photovoltaic/thermal (PV/T) and earth air heat exchanger (EAHE) system, integrated with a greenhouse, located at IIT Delhi, India, for different climatic conditions of Srinagar, Mumbai, Jodhpur, New Delhi and Bangalore. A comparison is made of various energy metrics, such as energy payback time (EPBT), electricity production factor (EPF) and life cycle conversion efficiency (LCCE) of the system by considering four weather conditions (a–d type) for five climatic zones. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. The annual overall thermal energy, annual electrical energy savings and annual exergy was found to be best for the climatic condition of Jodhpur at 29,156.8 kWh, 1185 kWh and 1366.4 kWh, respectively when compared with other weather stations covered in the study, due to higher solar intensity I and sunshine hours, and is lowest for Srinagar station. The results also showed that energy payback time for Jodhpur station is lowest at 16.7 years and highest for Srinagar station at 21.6 years. Electricity production factor (EPF) is highest for Jodhpur, i.e. 2.04 and Life cycle conversion efficiency (LCCE) is highest for Srinagar station. It is also observed that LCCE increases with increase in life cycle.  相似文献   

11.
In this paper, the optimization of a solar photovoltaic thermal (PV/T) water collector which is based on exergy concept is carried out. Considering energy balance for different components of PV/T collector, we can obtain analytical expressions for thermal parameters (i.e. solar cells temperature, outlet water temperature, useful absorbed heat rate, average water temperature, thermal efficiency, etc.). Thermal analysis of PV/T collector depends on electrical analysis of it; therefore, five-parameter current–voltage (IV) model is used to obtain electrical parameters (i.e. open-circuit voltage, short-circuit current, voltage and current at the point which has maximum electrical power, electrical efficiency, etc.). In order to obtain exergy efficiency of PV/T collector we need exergy analysis as well as energy analysis. Considering exergy balance for different components of PV/T collector, we obtain the expressions which show the exergy of the different parts of PV/T collector. Some corrections have been done on the above expressions in order to obtain a modified equation for the exergy efficiency of PV/T water collector. A computer simulation program has been developed in order to obtain the amount of thermal and electrical parameters. The simulation results are in good agreement with the experimental data of previous literature. Genetic algorithm (GA) has been used to optimize the exergy efficiency of PV/T water collector. Optimum inlet water velocity and pipe diameter are 0.09 m s−1, 4.8 mm, respectively. Maximum exergy efficiency is 11.36%. Finally, some parametric studies have been done in order to find the effect of climatic parameters on exergy efficiency.  相似文献   

12.
In this communication, a study is carried out to evaluate an annual thermal and exergy efficiency of a hybrid photovoltaic thermal (HPVT) air collector for different Indian climate conditions, of Srinagar, Mumbai, Jodhpur, New Delhi and Banglore. The study has been based on electrical, thermal and exergy output of the HPVT air collector. Further, the life cycle analysis in terms of cost/kWh has been carried out. The main focus of the study is to see the effect of interest rate, life of the HPVT air collector, subsidy, etc. on the cost/kWh HPVT air collector. A comparison is made keeping in view the energy matrices. The study reveals that (i) annual thermal and electrical efficiency decreases with increase in solar radiation and (ii) the cost/kWh is higher in case of exergy when compared with cost/kWh on the basis of thermal energy for all climate conditions. The cost/kWh for climate conditions of Jodhpur is most economical.  相似文献   

13.
文章设计了新型非晶硅太阳能PV/T空气集热器,该空气集热器能够解决传统太阳能PV/T热水器在高温波动情况下,晶硅电池热应力大的问题,同时避免了冬季管道发生霜冻的现象。文章通过实验对比,分析了非晶硅太阳能PV/T空气集热器、单独非晶硅光伏电池和传统太阳能空气集热器的能量效率和[火用]效率的差异。分析结果表明:非晶硅太阳能PV/T空气集热器的平均热效率为45.70%,比传统太阳能空气集热器的平均热效率降低了约25.88%;当空气质量流量增大至0.048 kg/s时,非晶硅太阳能PV/T空气集热器中的非晶硅光伏电池的平均电效率高于单独非晶硅光伏电池,它们的平均电效率分别为4.70%,4.54%;非晶硅太阳能PV/T空气集热器的总[火用]效率高于传统太阳能空气集热器的热[火用]效率和单独非晶硅光伏电池的电[火用]效率,非晶硅太阳能PV/T空气集热器总[火用]效率最大值为7.14%。文章的分析结果为非晶硅太阳能PV/T空气集热器的推广提供了参考。  相似文献   

14.
In this paper, overall thermal energy and exergy analysis has been carried out for different configurations of hybrid photovoltaic thermal (PVT) array. The hybrid PVT array (10.08 m × 2.16 m) is a series and parallel combinations of 36 numbers of PV modules. A one-dimensional transient model for hybrid PVT array has been developed using basic heat transfer equations. On the basis of this transient model, an attempt has been made to select an appropriate hybrid PVT array for different climatic conditions (Bangalore, Jodhpur, New Delhi, and Srinagar) of India. On the basis of high grade energy (i.e. overall exergy gain), case-III has been selected as the most appropriate configuration because overall exergy for case-III is 12.9% higher than case-II. The overall thermal energy and exergy gain for Bangalore is 4.54 × 104 kW h and 2.07 × 104 kW h respectively which is highest in comparison to the other cities.  相似文献   

15.
In the present investigation a theoretical analysis has been presented for the modelling of thermal and electrical processes of a hybrid PV/T air heating collector coupled with a compound parabolic concentrator (CPC). In this design, several CPC troughs are combined in a single PV/T collector panel. The absorber of the hybrid PV/T collector under investigation consists of an array of solar cells for generation of electricity, while collector fluid circulating past the absorber provides useful thermal energy as in a conventional flat plate collector. In the analysis, it is assumed that solar cell efficiency can be represented by a linear decreasing function of its temperature. Energy balance equations have been developed for the various components of the system. Based on the developed analysis, both thermal and electrical performance of the system as a function of system design parameters are presented and discussed. Results have been presented to compare the performance of hybrid PV/T collector coupled with and without CPC. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this paper is to optimize the number of collectors for PV/T hybrid active solar still. The number of PV/T collectors connected in series has been integrated with the basin of solar still. The optimization of number of collectors for different heat capacity of water has been carried out on the basis of energy and exergy. Expressions of inner glass, outer glass and water temperature have been derived for the hybrid active solar system. For the numerical computations data of a summer day (May 22, 2008) for Delhi climatic condition have been used. It has been observed that with increase of the mass of water in the basin increases the optimum number of collector. However the daily and exergy efficiency decreases linearly and nonlinearly with increase of water mass. It has been observed that the maximum yield occurs at N = 4 for 50 kg of water mass on the basis of exergy efficiency. The thermal model has also been experimentally validated.  相似文献   

17.
A solar dryer integrated with photovoltaic powered DC fan has been designed and installed at Solar Energy Park, Indian Institute of Technology Delhi. The dryer has been coupled to a solar air heater having blackened surface of absorber for improved energy collection efficiency and a drying chamber with chimney. An analytical expression for characteristic equation for photovoltaic/thermal mixed mode dryer has been derived as a function of design and climatic parameters. The experiment was carried out for forced mode under no load conditions during April 2008 and validated with theoretical results for New Delhi climatic condition. This paper also shows the detailed analysis of thermal energy, exergy, and electrical energy gain by considering four weather conditions (a, b, c, and d type) for five different cities (New Delhi, Bangalore, Mumbai, Srinagar, and Jodhpur) of India. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In the present work a comparative study for thermal and electrical performance of different hybrid photovoltaic/thermal collectors designs for Iraq climate conditions have been carried out. Four different types of air based hybrid PV/T collectors have been manufactured and tested. Three collectors consist of four main parts namely, channel duct, glass cover, axial fan to circulate air and two PV panels in parallel connection. The measured parameters are, the temperature of the upper and the lower surfaces of the PV panels, air temperature along the collector, air flow rate, pressure drop, power produced by solar cell, and climate conditions such as wind speed, solar radiation and ambient temperature. The thermal and hydraulic performances of PV/T collector model IV have been analyzed theoretically based on energy balance. A Matlab computer program has been developed to solve the proposed mathematical model.The obtained results show that the combined efficiency of collector model III (double duct, single pass) is higher than that of model II (single duct double pass) and model IV (single duct single pass). Model IV has the better electrical efficiency. The pressure drop of model III is lower than that of models II and IV. The root mean square of percentage deviations for PV outlet temperature, and thermal efficiency of model IV are found to be 3.22%, and 18.04% respectively. The calculated linear coefficients of correlation (r) are 0.977, 0.965 respectively.  相似文献   

19.
20.
In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, respectively, in the terms of design and climatic parameters. Further, an analysis has also been extended for hot water withdrawal at constant collection temperature. Numerical computations have been carried out for the design and climatic parameters of the system used by Huang et al. [Huang BJ, Lin TH, Hung WC, Sun FS. Performance evaluation of solar photovoltaic/thermal systems. Sol Energy 2001; 70(5): 443–8]. It is observed that the daily overall thermal efficiency of IPVTS system increases with increase constant flow rate and decrease with increase of constant collection temperature. The exergy analysis of IPVTS system has also been carried out. It is further to be noted that the overall exergy and thermal efficiency of an integrated photovoltaic thermal solar system (IPVTS) is maximum at the hot water withdrawal flow rate of 0.006 kg/s. The hourly net electrical power available from the system has also been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号