首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Long-term (48-h) forskolin treatment of rat astroglial cells led to a slight decrease (30-40%) in the response to isoproterenol, vasoactive-intestinal peptide, guanyl 5'-(beta gamma-imido)diphosphate, guanosine 5'-O-(3-thiotriphosphate) [GTP(S)], and AIF4- in crude membrane fractions. In contrast, the acute stimulatory effect of forskolin was increased by 1.25-1.5-fold. These two opposite effects of forskolin were mediated by a cyclic AMP-dependent mechanism. No changes in Gs alpha, Gi alpha, or G beta protein levels could be determined by immunoblotting using specific antisera. No significant differences were observed in the ability of G proteins extracted from control and forskolin-treated cells to reconstitute a full adenylyl cyclase activity in membranes from S49 cyc- cells, lacking Gs alpha protein. Gs alpha proteins were detected in two pools of membranes, one in the heavy sucrose fractions and the other in light sucrose fractions. Forskolin treatment of the cells shifted Gs alpha protein toward the light-density membranes. We did not find any significant change in the distribution of adenylyl cyclase. In contrast to the decreased stimulation of adenylyl cyclase activity by agonists acting via Gs alpha, observed in the crude membrane fraction, the responses of adenylyl cyclase to forskolin as well as to GTP(S) were increased in the purified plasma membrane fractions. These results may indicate that sensitization of the catalyst appears to be the dominant component in the astroglial cell response to long-term treatment by forskolin.  相似文献   

2.
Antibodies and their recombinant fragments have enormous potential for therapy of malignant and other diseases, but there can be problems associated with their production and purification in the quantities required for therapeutic use. We investigated the use of gene therapy for the production of such recombinant antibody fragments in vivo. We generated two recombinant adenoviruses expressing the single chain Fvs (scFvs) fused to murine GM-CSF (mGM-CSF). The scFvs used are MFE-23 which binds to a human tumour-associated marker carcino-embryonic antigen (CEA) and B1.8 which binds the hapten 4-hydroxy-3-nitro-5-iodo-phenylacetyl (NIP). Using scFvs to target GM-CSF to tumour cells should reduce the systemic toxicity of GM-CSF but retain its ability as a cytokine to induce systemic immune responses to tumour targets. Cell lines infected with the recombinant adenoviruses in vitro express and secrete high levels of the scFv.mGM-CSF fusion proteins. The scFv retains specificity while the mGM-CSF portion is fully bioactive and there is no detectable degradation of the fusion product. We also demonstrated effective in vivo expression of the scFv.mGM-CSF proteins. C57BI/6 mice injected intravenously with the adenovirus encoding the MFE-23.mGM-CSF fusion produce high levels of the fusion protein by 2 days after infection. The scFv.mGM-CSF protein can be detected in the serum, at biologically active levels, for at least 20 days and the level of protein produced is related to the amount of adenovirus injected. This approach has the potential to streamline the testing of the many therapeutic strategies based on recombinant scFvs and we are currently testing these constructs in an animal model for antitumour activity.  相似文献   

3.
The diagnostic usefulness of measuring plasma D-dimers using the ELISA method and the latex agglutination test has been prospectively evaluated in 117 patients hospitalized for suspicion of acute venous thrombo-embolism (AVTE): pulmonary embolism was suspected in 80 patients and the remaining 37 had a suspicion of deep vein thrombosis of the lower limbs. The diagnosis of AVTE was confirmed in 50% of the patients, all of whom underwent gold standard invasive investigation i.e. pulmonary angiography and/or contrast venography. The sensitivity, specificity, negative predictive value and positive predictive value of a D-dimers plasma concentration exceeding 500 ng/ml for the diagnosis of AVTE were respectively 98, 58, 97 and 70% when using the ELISA method, and 86, 71, 84 and 75% when using the latex assay. In 47 patients whose lung scans yielded abnormalities of indeterminate probability of pulmonary embolism, the sensitivity of the ELISA method was very high (94%), but that of latex assay was low (67%). Our results demonstrate that measuring the plasma D-dimers by the latex assay should not be used in the diagnosis of AVTE. On the other hand, the ELISA method might be of great interest in the diagnostic strategy of AVTE, as a normal concentration of D-dimers rules out almost definitely the diagnosis of AVTE, and hence, spares from performing invasive investigations.  相似文献   

4.
The human neurofibromatosis type 1 (NF1) tumor suppressor protein functions as a Ras-specific guanosine triphosphatase-activating protein, but the identity of Ras- mediated pathways modulated by NF1 remains unknown. A study of Drosophila NF1 mutants revealed that NF1 is essential for the cellular response to the neuropeptide PACAP38 (pituitary adenylyl cyclase-activating polypeptide) at the neuromuscular junction. The peptide induced a 100-fold enhancement of potassium currents by activating the Ras-Raf and adenylyl cyclase-adenosine 3',5'-monophosphate (cAMP) pathways. This response was eliminated in NF1 mutants. NF1 appears to regulate the rutabaga-encoded adenylyl cyclase rather than the Ras-Raf pathway. Moreover, the NF1 defect was rescued by the exposure of cells to pharmacological treatment that increased concentrations of cAMP.  相似文献   

5.
Mammalian adenylyl cyclases possess 12 transmembrane-spanning domains and bear a superficial resemblance to certain classes of ion channels. Some evidence suggests that bacterial and sea urchin sperm adenylyl cyclases can be regulated by membrane depolarization. In the present study, we explored the effect of altering membrane potential on the adenylyl cyclase activity of cerebellar granule cells with acute potassium depolarization. A biphasic stimulatory and then inhibitory response is evoked by progressive increases in the extracellular [K]:[Na] ratio in the absence of extracellular Ca2+. This effect does not mimic the linear increase in membrane potential elicited under the same conditions. Instead it appears as though membrane depolarization opens L-type (nimodipine-sensitive) Ca2+ channels, allowing the entry of Na+, which directly stimulates adenylyl cyclase activity. Gramicidin, which generates pores that are permeable to monovalent cations, and concurrently eliminates the membrane potential, permits a similar stimulation by extracellularly applied Na+. Although the results indicate no direct sensitivity of cerebellar granule cell adenylyl cyclase to membrane potential, they do demonstrate that, as a result of membrane depolarization, the influx of Na+, as well as Ca2+, will elevate cAMP levels.  相似文献   

6.
Synergism between Gs- and Gi- or Gq-dependent signaling pathways has been demonstrated in the stimulation of type II adenylyl cyclase (AC-II). Provision of activated alpha s is known to allow numerous Gi-coupled receptors to stimulate AC-II and to potentiate the responses to Gq-coupled receptors. To explore possible interactions between Gi- and Gq-coupled receptors that are independent of alpha s, the activity of AC-II was determined after the activation of Gi- and Gq-regulated pathways. Human embryonic kidney 293 cells were transiently cotransfected with cDNAs encoding AC-II and various G-protein-coupled receptors. Agonist-bound Gi-coupled receptors (including the formyl peptide, dopamine-D2, and delta-opioid receptors) stimulated AC-II activity in the absence of activated alpha s, provided that the cells were treated with 100 nM phorbol 12-myristate 13-acetate. Activation of protein kinase C (PKC) thus appears to relieve the requirement for the presence of activated alpha s. Stimulation of PKC via Gq-coupled receptors also allowed Gi-coupled receptors to activate AC-II. Coexpression of the m1 muscarinic receptor with the dopamine-D2 receptor permitted dopamine to stimulate AC-II in the presence of carbachol. The phorbol ester-permissive and alpha s-independent stimulation was mediated by G-protein beta gamma subunits because it was blocked by the beta gamma scavengers alpha t and beta-adrenergic receptor kinase. These results show that AC-II can efficiently integrate signals generated by Gq- and Gi-coupled receptors via a mechanism that is independent of Gs.  相似文献   

7.
G proteins are heterotrimeric GTPases that play a key role in signal transduction. The alpha subunit of Gs bound to GTP is capable of activating adenylyl cyclase. The amino acid sequences derived from two X. laevis cDNA clones that apparently code for Gs alpha subunits are 92% identical to those found in the short form of human Gs alpha. Despite this high homology, the X. laevis Gs alpha clones expressed in vitro, yielded a protein that are not able to activate the adenylyl cyclase present in S49 cyc- membranes in contrast with human Gs alpha similarly expressed. This finding suggested that the few amino acid substitutions found in the amphibian subunit are important in defining the functionality of the human Gs alpha. The construction of chimeras composed of different fractions of the cDNAs of the two species was adopted as an approach in determining the regions of the molecule important in its functionality in this assay. Four pairs of chimeras were constructed using reciprocal combinations of the cDNAs coding for human and Xenopus Gs alpha. These eight constructs were expressed in vitro and equivalent amounts of the resulting proteins were assayed in the activation of adenylyl cyclase with GTP gamma and isoproterenol. The results obtained here clearly indicate that the G alpha sequence that extends from amino acid 70 to 140, is important for the functionality of human Gs alpha in activating adenylyl cyclase.  相似文献   

8.
9.
Hypothyroidism profoundly reduces the capacity of brown adipose tissue (BAT) to generate cAMP in response to adrenergic stimulation. Evidence obtained with isolated brown adipocytes suggests a postreceptor defect that offsets the hypothyroidism-induced increase in beta3-adrenergic receptors. The goal of the present studies was to identify the defect in the cAMP generation pathway for which we studied cAMP generation in isolated cells and purified BAT membranes from normal and hypothyroid rats. Studies with adenosine deaminase and the adenosine receptor-1 agonist r-phenyl isopropyl adenosine (R-PIA) show that hypothyroid cells are not more sensitive to adenosine (same EC50) but more inhibited by high concentrations of R-PIA. Pretreatment with pertussis toxin reduced the gap in cAMP generation between eu- and hypothyroid cells and the inhibition mediated by R-PIA, but did not normalize the cAMP response to forskolin in hypothyroid cells. Although purified euthyroid BAT membranes increased cAMP production with GTP concentrations up to submillimolar range, to plateau or slightly decrease at higher levels, hypothyroid membranes were weakly stimulated by low concentrations of GTP and markedly inhibited (>50%) at concentrations > or = 10(-4) M. When assayed at 0.3 mM ATP and 1 microM GTP, hypothyroid membranes actually generated more cAMP in response to forskolin, but this was reversed when GTP concentration was 1 mM. Immunoblotting studies showed no significant effects of hypothyroidism on the abundance of G(alpha)i or Gbeta subunits, and ADP ribosylation of G(alpha)i was only 45% increased in hypothyroidism in contrast to a 2.5-fold increase in hypothyroid white adipose tissue membranes from the same rats. Hypothyroid membranes also exhibited different kinetics regarding ATP, with higher cAMP generation at submillimolar concentrations but less at >1 mM ATP. Actually, at ATP concentrations >0.6 mM, cAMP generation was markedly inhibited in hypothyroid membranes. Fixing the concentration of free Mg++ in these experiments indicates that most of the inhibition seen in hypothyroid membranes is caused by ATP, whereas euthyroid membranes are more sensitive to changes in free Mg++. Ca++ +/- calmodulin did not stimulate adenylyl cyclase (AC) activity. On the contrary, AC activity was inhibited by Ca++ in a concentration-dependent manner, by as low as 100 nM free Ca++, and to greater extent in hypo- than in euthyroid membranes (maximal inhibition 60 vs. 25-30%). Our results suggest that, functionally, hypothyroidism causes a change in the AC of BAT membranes consistent with a relative or absolute increase in the type VI AC (AC-VI). The effects on this AC of nucleotides, Ca++, and Mg++ at concentrations prevailing in the hypothyroid brown adipocyte are probably the major factor in the reduced capacity of these cells to generate cAMP. These results also open the possibility of a novel, differential effect of thyroid hormone on AC expression, and support the concept that thyroid hormone affects the adrenergic signal transduction pathways in a tissue-selective manner.  相似文献   

10.
11.
The stimulatory G protein alpha subunit Gsalpha binds within a cleft in adenylyl cyclase formed by the alpha1-alpha2 and alpha3-beta4 loops of the C2 domain. The pseudosymmetry of the C1 and C2 domains of adenylyl cyclase suggests that the homologous inhibitory alpha subunit Gialpha could bind to the analogous cleft within C1. We demonstrate that myristoylated guanosine 5'-3-O-(thio)triphosphate-Gialpha1 forms a stable complex with the C1 (but not the C2) domain of type V adenylyl cyclase. Mutagenesis of the membrane-bound enzyme identified residues whose alteration either increased or substantially decreased the IC50 for inhibition by Gialpha1. These mutations suggest binding of Gialpha within the cleft formed by the alpha2 and alpha3 helices of C1, analogous to the Gsalpha binding site in C2. Adenylyl cyclase activity reconstituted by mixture of the C1 and C2 domains of type V adenylyl cyclase was also inhibited by Gialpha. The C1b domain of the type V enzyme contributed to affinity for Gialpha, but the source of C2 had little effect. Mutations in this soluble system faithfully reflected the phenotypes observed with the membrane-bound enzyme. The pseudosymmetrical structure of adenylyl cyclase permits bidirectional regulation of activity by homologous G protein alpha subunits.  相似文献   

12.
The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively. PMA at 1 microM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%. Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCbeta) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA. Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%. Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production. The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane. Western blot analysis revealed the presence of eight PKC isoforms (alpha, betaI, betaII, delta, epsilon, mu, lambda and xi) in RAW 264.7 cells and PMA was shown to induce the translocation of the alpha, betaI, betaII, delta, epsilon and mu isoforms from the cytosol to the cell membrane within 2 min. Pretreatment of cells with PMA for 2-24 h resulted in a time-dependent down-regulation of PKCalpha, betaI, betaII, and delta expression, while the levels of the other four PKC isozymes were unchanged after PMA treatment for 24 h. A decrease in the potentiation of AA release by PMA was observed, concomitant with the time-dependent down-regulation of PKC. These results indicate that PKCbeta has a crucial role in the mediation of cPLA2 activation by the phorbol ester PMA, whereas PMA utilizes PKC epsilon and/or mu to up-regulate AC activity.  相似文献   

13.
Platelet adenylyl cyclase (AC) activity was measured in 32 alcohol-dependent subjects and 27 control subjects who were categorized as either family history-positive (FHP) or family history-negative (FHN) for alcoholism. The interview and blood sample collections were performed shortly after cessation of heavy drinking in the alcoholic group, and repeat blood samples were obtained at the end of the first and second weeks of monitored abstinence. Control subjects received the same interview and provided blood samples at the time of the interview. When subjects were not segregated for FHP or FHN status, there were no statistically significant differences in basal, cesium fluoride (CsF)-, or forskolin-stimulated mean AC activities between the controls and the alcoholics, at study entry or with 1 or 2 weeks of abstinence. On the other hand, over the 2-week course of sobriety from heavy drinking, the CsF-stimulated AC activity of FHP alcohol-dependent subjects decreased significantly (p = 0.03). FHP alcohol-dependent subjects after 2 weeks of sobriety had significantly lower mean CsF-stimulated AC activity than FHN controls (p = 0.04), whereas the FHN alcoholic subjects' CsF-stimulated AC activity did not differ significantly from FHN controls at this point in time. When all subjects were pooled and then categorized as either FHP or FHN, there was a significant difference in mean CsF-stimulated AC activity (p = 0.02) between the FHP and FHN subject groups. Genetic factors and abstinence appear to have roles in determining low platelet AC activity in alcoholic and nonalcoholic subjects. CsF-stimulated platelet AC activity, in particular, appears to act as a trait marker for a genetic vulnerability to developing alcoholism, but recent heavy drinking in male alcoholics is a factor that can mask differences between FHP and FHN subjects.  相似文献   

14.
An engineered, soluble form of mammalian adenylyl cyclase has been expressed in Escherichia coli and purified by three chromatographic steps. The enzyme utilizes one molecule of ATP to synthesize one molecule of cyclic AMP and pyrophosphate at a maximal specific activity of 12.8 micromol/min/mg, corresponding to a turnover number of 720 min-1. Although devoid of membrane spans, the enzyme displays all of the regulatory properties that are common to mammalian adenylyl cyclases. It is activated synergistically by Gsalpha and forskolin and is inhibited by adenosine (P-site) analogs with kinetic patterns that are identical to those displayed by the native enzymes. The purified enzyme is also inhibited directly by the G protein betagamma subunit complex. After adenovirus-mediated expression in adenylyl cyclase-deficient HC-1 cells, the enzyme can be stimulated synergistically by Gs-coupled receptors and forskolin.  相似文献   

15.
An immunoprecipitation method was used to measure [32P]phosphate incorporation into the adenylyl cyclase VI protein in Chinese Hamster Ovary (CHO) cells stably expressing the human delta-opioid receptor. Chronic SNC 80 ((+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N ,N-diethyl-benzamide) 1 microM, 24 h) treatment increased the incorporation of [32P] into a 200 kDa protein band 2.5-fold after gel electrophoresis. The increase in phosphorylation of adenylyl cyclase VI was antagonized by naltrindole (1 microM) and the immunoprecipitation was prevented by the saturation of the antibody with the blocking peptide.  相似文献   

16.
The neurotransmitter dopamine acts through various receptor subtypes that are largely associated with enhancement or inhibition of adenylyl cyclases. These dopamine-sensitive adenylyl cyclases are highly concentrated in the corpus stratum and associated limbic structures of the brain, where their levels exceed by orders of magnitude those in other areas of the brain. Here we use in situ hybridization to show that messenger RNA for three of these adenylyl cyclases is not found in the corpus striatum. We have isolated and expressed a complementary DNA encoding new adenylyl cyclase whose selective concentration in the corpus striatum indicates that it may be responsible for the synaptic actions of dopamine.  相似文献   

17.
18.
The potential effect of inhibition of phospholipase C on the response of Gi-coupled receptors was investigated in neuroblastoma x glioma hybrid (NG108-15) cells. The phospholipase C specific inhibitor 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H -pyrrole-2,5-dione (U73122), which did not affect basal and forskolin-stimulated adenylyl cyclase activities, time- and dose-dependently blocked delta-opioid receptor-mediated inhibition of adenylyl cyclase activity, the EC50 (0.5 microM) of which was consistent with that for inhibition of bradykinin-dependent phospholipase C activation (EC50 = 1 microM). U73122 treatment also blocked functional responses of m4 muscarinic receptor and alpha2-adrenoceptor in NG108-15 cells and three opioid receptors (mu, delta and opioid receptor-like receptor (ORL1)) in human neuroblastoma SK-N-SH cells. 1-[6-((17Beta-3-Methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-2, 5-pyrrolidinedione (U73343), an inactive analog of U73122, did not show any effect, which suggests that the blockade by U73122 of Gi-coupled receptor-mediated signaling is probably mediated through inhibition of phospholipase C, although a possible direct modification of G proteins can not be excluded. Furthermore, treatment with U73122 but not U73343 blocked the GTP-induced inhibition of adenylyl cyclase, indicating blockade at the level of Gi proteins.  相似文献   

19.
Disruption of either the RDEA or REGA genes leads to rapid development in Dictyostelium. The RDEA gene product displays homology to certain H2-type phosphotransferases, while REGA encodes a cAMP phosphodiesterase with an associated response regulator. It has been proposed that RDEA activates REGA in a multistep phosphorelay. To test this proposal, we examined cAMP accumulation in rdeA and regA null mutants and found that these mutants show a pronounced accumulation of cAMP at the vegetative stage that is not observed in wild-type cells. This accumulation was due to a novel adenylyl cyclase and not to the known Dictyostelium adenylyl cyclases, aggregation stage adenylyl cyclase (ACA) or germination stage adenylyl cyclase (ACG), since it occurred in an acaA/rdeA double mutant and, unlike ACG, was inhibited by high osmolarity. The novel adenylyl cyclase was not regulated by G-proteins and was relatively insensitive to stimulation by Mn2+ ions. Addition of the cAMP phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) permitted detection of the novel adenylyl cyclase activity in lysates of an acaA/acgA double mutant. The fact that disruption of the RDEA gene as well as inhibition of the REGA-phosphodiesterase by IBMX permitted detection of the novel AC activity supports the hypothesis that RDEA activates REGA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号