首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用多体动力学分析软件SIMPACK建立了地铁车辆动力学分析模型,选取异常磨耗后的几种典型钢轨型面,通过考虑轨道表面不平顺和轮轨蠕滑等非线性因素,研究了车轮踏面异常磨耗对轮轨接触行为和动力学行为的影响。结果表明:车轮踏面异常磨耗影响轮轨接触点的分布,从而进一步影响车辆的动力学性能;轻微磨耗后的踏面轮轨型面匹配较好,轮轨动力学行为相比原始轮轨型面有所改善;车轮踏面异常磨耗后的车辆动力学性能大大降低,尤其是在通过小半径曲线时,车辆动力学性能较差;车轮踏面两沟槽磨耗对车辆动力学行为影响明显大于一沟槽磨耗的车轮踏面。  相似文献   

2.
Gao  Yuan  Wang  Ping  Wang  Kai  Xu  Jingmang  Dong  Zhiguo 《铁道工程科学(英文)》2021,29(1):59-73

Broken gap is an extremely dangerous state in the service of high-speed rails, and the violent wheel–rail impact forces will be intensified when a vehicle passes the gap at high speeds, which may cause a secondary fracture to rail and threaten the running safety of the vehicle. To recognize the damage tolerance of rail fracture length, the implicit–explicit sequential approach is adopted to simulate the wheel–rail high-frequency impact, which considers the factors such as the coupling effect between frictional contact and structural vibration, nonlinear material and real geometric profile. The results demonstrate that the plastic deformation and stress are distributed in crescent shape during the impact at the back rail end, increasing with the rail fracture length. The axle box acceleration in the frequency domain displays two characteristic modes with frequencies around 1,637 and 404 Hz. The limit of the rail fracture length is 60 mm for high-speed railway at a speed of 250 km/h.

  相似文献   

3.
Wu  Na  Zeng  Jing 《铁道工程科学(英文)》2014,22(2):76-83
Railway Engineering Science - In order to reduce the wheel profile wear of high-speed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the...  相似文献   

4.
高速列车车轮多边形化对车辆动力学性能的影响   总被引:1,自引:0,他引:1  
采用车轮圆周轮廓法建立比传统等效轨道激扰法更准确的车轮多边形化模型,假设车轮型面不发生变化,车轮半径沿圆周方向发生改变.只考虑车轮周期性多边形不圆顺,且同一轮对上的2个多边形车轮不存在幅值和相位的差异,建立车辆-轨道耦合系统动力学模型,计算高速运营状态下周期性多边形的车轮振动响应、轮轨垂向力等动力学指标.结果表明:车轮多边形化会使车体振动响应增大,影响乘坐舒适性;车轮多边形化还会引起较大的轮轨垂向力,甚至当不圆顺幅值为0.5mm时,会出现轮轨相互瞬时脱离的现象,且同等条件下幅值对车辆系统动力学性能的影响比谐波阶数更为显著;针对高速列车车轮多边形化的动态特征,提出轮轨垂向力来划定其安全区域.在京津实测线路上,得到不同车速下,1、2、3和4阶车轮多边形化的幅值限制值分别为1.0、0.4、0.4和0.3mm.  相似文献   

5.
A novel electromagnetic tomography(EMT) system for defect detection of high-speed rail wheel is proposed, which differs from traditional electromagnetic tomography systems in its spatial arrangements of coils. A U-shaped sensor array was designed, and then a simulation model was built with the low frequency electromagnetic simulation software. Three different algorithms were applied to perform image reconstruction, therefore the defects can be detected from the reconstructed images. Based on the simulation results, an experimental system was built and image reconstruction were performed with the measured data. The reconstructed images obtained both from numerical simulation and experimental system indicated the locations of the defects of the wheel, which verified the feasibility of the EMT system and revealed its good application prospect in the future.  相似文献   

6.
为了研究正在建设的某城市地铁振源系统,根据地铁拟采用的车型、块下胶垫和扣件等参数,建立车轨垂向耦合振动模型。计算车体、轮对和道床的垂向最大振动加速度,分析车体运行的平稳性及振源的减振效能。结果表明:该城市地铁拟采用的振源系统具有良好的减振效能;A型车车体运行平稳性优于B型车;低速时,参数的选取对振源系统的减振效能没有明显影响,随着车速的增加,减振效能呈降低趋势且不同参数间差距扩大,但当车速大于60 km/h时,减振效能趋于稳定;对减振效能的贡献,扣件最大,块下胶垫的阻尼其次,而A、B型车体和块下胶垫的刚度影响则不明显。  相似文献   

7.
利用有限元分析软件Ansys对轮轨系统进行弹塑性静力分析,建立起重机小车在运行中发生偏斜和不发生偏斜两种工况下的有限元模型,研究这两种不同工况下轮轨系统所受应力的分布状态. 结果表明,小车运行中发生偏斜时,轮轨承受更大的应力,最大应力区集中分布在小车偏斜方向的半边轨道上,且轮缘与轨道之间发生接触,导致轮轨更易磨损.  相似文献   

8.
为研究音速以上运行的高速滑轨平顺度对撬轨动力响应的影响规律和控制指标,采用车辆动力学、轨道动力学理论,建立了高速试验滑轨系统撬轨动力分析模型,对不同速度、不同激励条件下撬轨动力响应进行了分析计算,定量探讨了高速滑轨平顺度对撬轨系统的动力响应影响.结果表明,单轨滑撬在速度为700 m/s时峰值沉浮加速度高达5.1 m/s2.700 m/s时滑撬振动加速度约为100 m/s时的8倍多.为避免过大振动,高速滑轨不平顺幅值应控制在2 mm以内.  相似文献   

9.
为研究直线电机轮轨列车行驶于曲线段线路上时,铁路线路条件对列车动力响应的影响规律,以便为修改线路设计规范提供理论依据.建立直线电机轮轨交通列车线路动力学模型,模型中直线电机所受垂向电磁力大小随列车牵引速度和电机气隙的变化而时刻改变.仿真模拟并分析垂向电磁力、车速、曲线半径、超高、轨道不平顺对系统动力响应的影响.结果表明:轨道垂向不平顺和高车速对气隙影响显著;列车通过小半径曲线段时,垂向电磁力对脱轨系数和轮重减载率的消减作用显著;脱轨系数、轮重减载率、轮轨横向力、车体横向加速度、车体横向位移这5类动力响应的最大值,同时受车速、曲线半径、超高影响显著.基于5类动力响应最大值的拟合公式,可对车速、曲线半径、超高取值范围进行合理匹配,并确定曲线地段的合理车辆限界.  相似文献   

10.
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance.  相似文献   

11.
The motor and trailer cars of a high-speed train were modeled as a multi-rigid body system with two suspensions. According to structural characteristic of a slab track, a new spatial vibration model of track segment element of the slab track was put forward. The spatial vibration equation set of the high-speed train and slab track system was then established on the basis of the principle of total potential energy with stationary value in elastic system dynamics and the rule of "set-in-right-position" for formulating system matrices. The equation set was solved by the Wilson-θ direct integration method. The contents mentioned above constitute the analysis theory of spatial vibration of high-speed train and slab track system. The theory was then verified by the high-speed running experiment carried out on the slab track in the Qinghuangdao-Shenyang passenger transport line. The results show that the calculated results agree well with the measured rcsults, such as the calculated lateral and vertical rail displacements are 0.82 mm and 0.9 mm and the measured ones 0.75 mm and 0.93 mm, respectively; the calculated lateral and vertical wheel-rail forces are 8.9 kN and 102.3 kN and the measured ones 8.6 kN and 80.2 kN, respectively. The interpolation method, that is, the lateral finite strip and slab segment element, for slab deformation proposed is of simplification and applicability compared with the traditional plate element method. All of these demonstrate the reliability of the theory proposed.  相似文献   

12.

Imperfections in the wheel–rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unknown. In order to assess the effectiveness of these measures, this paper develops a vehicle–track interaction model in the time domain of a curved track with presence of rail corrugation on the inner rail. To characterize the behavior of the track, a numerical finite element model is developed using ANSYS software, while the behavior of the vehicle is characterized by a unidirectional model of two masses developed with VAMPIRE PRO software. The overloads obtained with the dynamic model are applied to the numerical model and then, the vibrational response of the track is obtained. Results are validated with real data and used to assess the effectiveness of rail grinding in the reduction of wheel–rail forces and the vibration generation phenomenon.

  相似文献   

13.
Ye  Yunguang  Vuitton  Jonas  Sun  Yu  Hecht  Markus 《铁道工程科学(英文)》2021,29(1):74-93

This paper develops a wheel profile fine-tuning system (WPFTS) that comprehensively considers the influence of wheel profile on wheel damage, vehicle stability, vehicle safety, and passenger comfort. WPFTS can recommend one or more optimized wheel profiles according to train operators’ needs, e.g., reducing wheel wear, mitigating the development of wheel out-of-roundness (OOR), improving the shape stability of the wheel profile. Specifically, WPFTS includes four modules: (I) a wheel profile generation module based on the rotary-scaling fine-tuning (RSFT) method; (II) a multi-objective generation module consisting of a rigid multi-body dynamics simulation (MBS) model, an analytical model, and a rigid–flexible MBS model, for generating 11 objectives related to wheel damage, vehicle stability, vehicle safety, and passenger comfort; (III) a weight assignment module consisting of an adaptive weight assignment strategy and a manual weight assignment strategy; and (IV) an optimization module based on radial basis function (RBF) and particle swarm optimization (PSO). Finally, three cases are introduced to show how WPTFS recommends a wheel profile according to train operators’ needs. Among them, a wheel profile with high shape stability, a wheel profile for mitigating the development of wheel OOR, and a wheel profile considering hunting stability and derailment safety are developed, respectively.

  相似文献   

14.
轮轨横向接触系统的自激振动分析   总被引:1,自引:0,他引:1  
为了研究轮轨接触过程中发生的自激振动现象对轮轨曲线啸叫噪声的影响,建立了轮轨横向接触系统的单自由度动力学方程,采用基于De Beer模型的改进的新型摩擦系数模型计算了轮轨接触面上的摩擦力变化,用相平面法分析了动、静摩擦系数以及横向蠕滑率对该自激振动系统的稳定性影响.计算结果表明:不稳定的轮轨自激振动会激发车轮的若干模态...  相似文献   

15.
根据赫兹接触理论,在JD—1型轮轨模拟试验机上通过改变钢轨曲率半径研究了曲线半径对地铁钢轨磨损的影响。实验结果表明:随着曲率半径的减小,钢轨磨损量增大,磨损深度和宽度均有所增加;钢轨曲率半径较小时,轮轨间存在蠕滑行为,钢轨承受的横向水平力和摩擦力均增大,这将导致钢轨接触面产生严重的塑性变形和表面硬化。  相似文献   

16.
基于二维滚动接触理论和部分弹流理论,建立了微凸体接触情况下的稳态部分弹流数值模型,运用多重网格法对油介质工况下的轮轨黏着特性进行数值仿真研究。利用所建立的数值仿真模型研究了轮轨接触压力分布情况,分析了滚动速度、载荷、轮轨表面粗糙度等参数对轮轨黏着特性的影响。结果表明:油介质条件下轮轨接触区的宽度比干态下要宽,是干态下接触区宽度的1.5倍左右;油介质下的轮轨黏着系数明显小于干态下的黏着系数;轮轨黏着系数随着速度的增加逐渐减小,随接触压力的增加而降低,随轮轨表面粗糙度的增加而增大。  相似文献   

17.
Xu  Jing-mang  Wang  Ping  Ma  Xiao-chuan  Qian  Yao  Chen  Rong 《中南大学学报(英文版)》2017,24(4):988-1001
Journal of Central South University - Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway...  相似文献   

18.

Anti-slip control systems are essential for railway vehicle systems with traction. In order to propose an effective anti-slip control system, adhesion information between wheel and rail can be useful. However, direct measurement or observation of adhesion condition for a railway vehicle in operation is quite demanding. Therefore, a proportional–integral controller, which operates simultaneously with a recently proposed swarm intelligence-based adhesion estimation algorithm, is proposed in this study. This approach provides determination of the adhesion optimum on the adhesion-slip curve so that a reference slip value for the controller can be determined according to the adhesion conditions between wheel and rail. To validate the methodology, a tram wheel test stand with an independently rotating wheel, which is a model of some low floor trams produced in Czechia, is considered. Results reveal that this new approach is more effective than a conventional controller without adhesion condition estimation.

  相似文献   

19.
随着高速铁路与城市轨道交通的快速发展,振动与噪声问题愈发突出。传统直立式声屏障对轮轨噪声降噪效果明显,当列车运行速度超过250 km/h时,其降噪量不足,为此,我国高速铁路正力推全封闭声屏障的建设。同时,随着钢桥或钢混组合桥在我国高速铁路和城市轨道交通中逐步得到广泛应用,钢桥或钢混组合桥的声辐射能力更强,具有频谱宽、幅值大和难控制等特点。因此,在环境敏感区域建造钢桥或钢混组合桥时,亟待解决其噪声控制问题。围绕“高速铁路声屏障降噪性能与动力特性”和“钢桥减振降噪”两个研究方向,简要评述了该方向的研究动态及发展趋势。  相似文献   

20.
独立车轮与钢轨接触问题的研究   总被引:2,自引:0,他引:2  
应用有限元参数二次规划法建立了独立车轮与钢轨接触的三维计算模型,通过分析不同踏面、不同相对位置的轮轨接触,得出了轮轨接触斑形状和面积、接触力的变化规律,并且对比不同踏面在减缓磨耗方面的特点.同时建立了磨耗后的轮轨接触模型,分别研究直线段和曲线段轮轨配合接触问题,总结了不同模型的接触斑面积、形状、位置,以及接触力分布和等效应力的变化规律.结果表明磨耗后的轮轨配合与其它模型相比接触斑面积最大,轮轨匹配相对较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号