首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对机动的目标跟踪,提出扩展的卡尔曼滤波器/多假设跟踪方法(EKF/MHT),该算法具有结构和计算简单,鲁棒性好的特点,同时研究了和声学传感器相联系的目标数量、位移量和探测分辨率对跟踪性能的影响,并通过仿真,充分说明了文中所提出的跟踪算法能够较好地弥补传统的Kalman滤波/MHT方法在跟踪机动目标时的不足。  相似文献   

2.
针对多扩展目标跟踪过程中量测集划分准确度低和计算量大的问题,提出一种基于改进K-means++聚类划分的高斯混合假设密度强度多扩展目标跟踪算法。首先,根据下一时刻目标可能变化的情况缩小K值的遍历范围;其次,利用目标预测状态选择初始聚类中心点,为正确划分量测集提供依据,从而提高聚类算法的精度;最后,将所提改进K-means++聚类划分方法应用到高斯混合概率假设滤波器中,联合估计多目标的个数和状态。仿真实验结果表明:与基于距离划分和基于K-means++的多扩展目标跟踪算法相比,该算法在平均跟踪时间上分别减小了59.16%和53.25%,同时其最优子模式指派度量(OSPA)远小于以上两种算法。综上,该算法能在大幅度降低计算复杂度的同时取得比现有量测集划分方法更为优异的跟踪性能。  相似文献   

3.
针对原始扩展目标高斯混合概率假设密度(Extended Target Gaussian Mixture Probability Hypothesis Density,ET-GM-PHD)滤波算法不能解决机动目标跟踪问题,在高斯混合概率假设密度(Gaussian Mixture Probability Hypothesis Density,GM-PHD)滤波框架下,引入修正的输入估计算法(Modified Input Estimation,MIE),可以有效地处理多扩展目标的机动问题。此外,提出的算法虽然可以实现对未知数目的多机动扩展目标进行跟踪,但无法获得各个目标的航迹。针对此问题,进一步引入高斯分量标记方法,有效地将多机动扩展目标的航迹进行准确关联,获取各个目标的航迹。实验结果表明,提出的算法在弱机动扩展目标跟踪中具有较好的跟踪性能,同时能够有效地估计多扩展目标的航迹。  相似文献   

4.
郭云飞  李勇  任昕  彭冬亮 《自动化学报》2020,46(11):2392-2403
针对杂波环境下多机动扩展目标跟踪问题, 提出一种基于高斯过程的变结构多模型联合概率数据关联方法.首先, 采用期望模型扩展方法构建自适应模型集, 并对各个扩展目标状态进行初始化.其次, 基于高斯过程建立联合跟踪门以选择有效量测, 形成联合关联矩阵.然后, 拆分联合关联矩阵得到可行关联矩阵并求解关联事件概率.最后, 利用联合概率数据关联滤波器更新各个扩展目标的状态和协方差, 并将更新的状态进行融合, 得到最终的状态估计.仿真验证了所提方法的有效性.  相似文献   

5.
针对多传感器协同探测多个低可观测目标问题,提出一种基于强度叠加的多传感器高斯混合概率假设密度(SIM-GM-PHD)滤波器,并提出目标状态的两步提取策略.首先,利用跟踪门对预测强度函数中每个高斯分量选择有效传感器集合;然后,利用各传感器量测数据更新其对应的高斯分量,叠加所有传感器的局部后验强度以及全局漏检强度得到融合后验强度;最后,提出目标状态的两步提取策略对目标的个数与状态进行估计.仿真结果验证了所提出算法的有效性.  相似文献   

6.
针对杂波环境下伽玛高斯逆威舍特混合势概率假设密度(GGIW-CPHD)滤波器难以有效提取衍生扩展目标的问题,提出采用多假设对衍生目标建模跟踪的方法。算法利用随机矩阵模型对扩展目标的形状和尺寸进行建模,并根据多假设模型对衍生事件进行预测,最后通过GGIW混合实现扩展目标运动状态、扩展状态和量测率的联合估计。实验结果表明,与标准GGIW-CPHD滤波算法相比,在含有衍生事件的情景下所提方法实现更好的目标势估计性能且具有较强的适用性。  相似文献   

7.
随着信息化改革的不断深入,目标跟踪问题越来越受到人们的重视。特别是在国防领域,如雷达对飞机、轮船和导弹等机动军事目标的精确探测和定位很大程度上决定了战争武器的有效性。针对点目标和扩展目标同时存在的特殊情况,提出基于随机集的点目标和扩展目标联合跟踪算法。该算法探索基于随机有限集的扩展目标滤波器对于点目标跟踪的不足,并尝试通过放宽约束条件的方式对其进行改进。仿真结果表明,在点目标和扩展目标同时存在的情况下,本文所提算法相比于已有基于随机集理论的扩展目标跟踪算法具有更好的鲁棒性。  相似文献   

8.
陈辉  张星星 《自动化学报》2023,49(7):1573-1586
针对厚尾噪声条件下不规则星凸形多扩展目标跟踪(Multiple extended target tracking, METT)问题, 提出一种基于多伯努利滤波的厚尾噪声条件下多扩展目标跟踪方法. 首先, 采用学生t分布对厚尾过程噪声和量测噪声进行建模, 并基于有限集统计(Finite set statistics, FISST)理论利用随机超曲面模型(Random hypersurface model, RHM)建立不规则星凸形多扩展目标的跟踪滤波模型. 然后, 利用学生t混合(Student's t mixture, STM)模型来表征多伯努利密度, 提出学生t混合多扩展目标多伯努利(Student's t mixture multiple extended target multi-Bernoulli filter, STM-MET-CBMeMBer)滤波算法, 并进一步基于鲁棒学生t容积滤波算法提出了非线性鲁棒学生t混合星凸形多扩展目标多伯努利滤波算法. 最后, 通过构造厚尾噪声条件下星凸形多扩展目标和多群目标的跟踪仿真实验验证了所提方法的有效性.  相似文献   

9.
针对高斯混合假设概率密度滤波扩展目标跟踪算法中的观测集合划分问题,本文分析了距离门限划分方法存在的问题,提出了一种利用聚类方法进行观测数据集合划分的方法。该方法利用极大似然方法获得目标数的估计值,以此作为聚类数利用K-means聚类对观测数据集合进行聚类划分,并利用椭球门限对观测数据进行处理以降低杂波观测对聚类划分的影响。实验结果表明,该方法能够获得正确的划分观测集合,计算复杂度较距离门限划分方法有较大降低,同时在多目标跟踪效果方面优于观测数据距离门限划分的假设概率密度滤波扩展目标跟踪算法。  相似文献   

10.
为解决单声矢量传声器(Acoustic vector sensor, AVS)可跟踪声目标数目少、跟踪性能差的问题, 提出了基于AVS虚拟扩展的多机动声目标跟踪算法. 首先, 引入高阶累积量预处理过程并建立高阶似然函数, 不仅能够抑制高斯噪声、提高估计精度, 还可通过AVS的虚拟扩展增加可跟踪目标数目. 然后, 在边缘化$\delta$广义标签多伯努利(Marginalized $\delta$-generalized label multi-bernoulli, M$\delta$-GLMB)滤波框架下, 提出了基于累积量的增广运动模型状态的M$\delta$-GLMB (Cumulants-based augumented motion model state M$\delta$-GLMB, Cum-AMMS-GLMB)算法. 算法引入多种运动模型, 并将表征不同模型的索引标号作为目标状态的增广参数, 通过各模型间的加权混合获取优于单一运动模型的跟踪性能. 除此之外, 算法的序贯蒙特卡洛(Sequential Monte Carlo, SMC)实现过程中, 依据高阶预处理获得的归一化空间谱拟合检测概率函数, 抑制了杂波向可用粒子扩展, 进一步增强了高似然区域的粒子. 最后, 推导了AVS目标跟踪的后验克拉美罗下界(Posterior cram$\acute{e}$r-rao lower bound, PCRLB), 并通过仿真实验验证了算法的量测噪声抑制能力和声目标跟踪性能.  相似文献   

11.
基于星凸形随机超曲面模型多扩展目标多伯努利滤波器   总被引:2,自引:0,他引:2  
针对复杂不确定性环境下具有不规则形状的多扩展目标跟踪问题, 提出了一种基于星凸形随机超曲面模型(Star-convex RHM)的多扩展目标多伯努利滤波算法.首先, 在有限集统计(Finite set statistics, FISST)理论框架下, 采用多伯努利随机有限集(MBer-RFS)和泊松RFS (Possion-RFS)分别描述多扩展目标的状态和观测, 并给出扩展目标势均衡多目标多伯努利(ET-CBMeMBer)滤波器.其次, 利用RHM去描述任意星凸形扩展目标的量测源分布, 提出了容积卡尔曼高斯混合星凸形多扩展目标多伯努利滤波器.此外, 本文给出了一种多扩展目标不规则形状估计性能的评价指标.最后, 通过多扩展目标和具有形状突变的多群目标的跟踪仿真实验验证了本文方法的有效性.  相似文献   

12.
针对当前扩展目标跟踪量测划分方法中,距离划分存在划分数过多、计算复杂度高的问题,本文将密度峰值快速聚类算法CFSFDP (Clustering by Fast Search and Find of Density Peaks)与箱粒子势概率假设滤波器(Box Cardinalized Probability Hypothesis Density filter,Box-CPHD)相结合,提出基于CFSFDP的箱粒子CPHD扩展目标滤波算法.该算法采用CFSFDP进行量测划分,基于量测信息密度的不同可以有效划分区间量测,并剔除杂波量测,然后采用箱粒子CPHD进行预测更新和目标状态估计.仿真实验表明与经典的距离划分方法相比,在箱粒子CPHD扩展目标算法流程中采用CFSFDP进行量测预处理,CFSFDP在达到同等效果的前提下,运行时间明显减少;在剔除杂波之后的高杂波环境下,杂波的变化只影响距离划分的运算时间而不再影响CFSFDP划分,采用CFSFDP处理量测信息可以有效提高运行效率和算法实时性,剔除杂波之后在一定程度上提高了目标位置估计精度.  相似文献   

13.
基于分布式有限感知网络的多伯努利目标跟踪   总被引:1,自引:0,他引:1  
针对感知范围受限的分布式传感网多目标跟踪问题, 在多伯努利滤波跟踪理论基础上提出分布式视场互补多伯努利关联算术平均融合跟踪方法. 首先, 通过视场互补扩大传感器感知范围, 其中, 局部公共区域只互补一次以降低计算成本. 其次, 每个传感器分别运行局部多伯努利滤波器, 并将滤波后验结果与相邻传感器进行泛洪通信使得每个传感器获取多个相邻传感器的后验信息. 随后, 通过距离划分进行多伯努利关联, 将对应于同一目标的伯努利分量关联到同一个子集中, 并对每个关联子集进行算术平均融合完成融合状态估计. 仿真实验表明, 所提方法在有限感知范围的分布式传感器网络中能有效地进行多目标跟踪.  相似文献   

14.
基于EKF的机动目标跟踪算法的研究   总被引:1,自引:0,他引:1  
假设一种机动目标运动:目标的速度大小不变,方向一直对准观测站.比较Singer模型和常速度(CV)模型,采用扩展卡尔曼滤波(EKF)算法对目标进行跟踪.仿真结果表明,在这种机动目标跟踪中,采用Singer模型比CV模型具有较快的收敛速度,而采用CV模型比Singer模型具有较高的跟踪精度.  相似文献   

15.
扩展目标高斯混合概率假设密度(Extended Target Gaussian Mixture Probability Hypothesis Density,ET-GM-PHD)跟踪算法是扩展目标跟踪领域内最为重要的跟踪算法之一。然而当多个目标邻近时,该算法的状态估计精度降低,这是由于距离-Kmeans++(Distance Partitioning-Kmeans++,DP-Kmeans++)量测集划分算法无法输出正确的结果所导致。为解决该问题,提出了改进的DP-Kmeans++量测集划分算法,利用目标预测信息来分割量测集,从而提高了划分精度。仿真结果表明,当目标邻近时,使用提出划分算法使ET-GM-PHD跟踪算法的OSPA误差距离减小。  相似文献   

16.
针对工业控制中智能视频的应用,本文研究了基于SOPC的智能视频在工业控制中目标检测与跟踪系统,本系统包含四个模块:图像采集模块、存储模块、目标检测跟踪模块和VGA显示模块,可以完成视频中图像的采集与处理、目标的检测与跟踪和显示等功能,实现了运动目标检测与跟踪的准确性和实时性.实验结果显示,本研究在运动目标的跟踪时偏移度...  相似文献   

17.
本文针对杂波条件下多扩展目标的状态估计, 目标个数估计, 扩展目标形状估计问题, 提出了一种基于标签随机有限集(Labelled random finite sets, L-RFS)框架下多扩展目标跟踪学习算法, 该学习算法主要包括两方面:多扩展目标动态建模和多扩展目标的跟踪估计.首先, 结合广义标签多伯努利滤波器(Generalized labelled multi-Bernoulli, GLMB)建立了扩展目标的量测有限混合模型(Finite mixture models, FMM), 利用Gibbs采样和贝叶斯信息准则(Bayesian information criterion, BIC)准则推导出有限混合模型的参数来对多扩展目标形状进行学习, 然后采用等效量测方法来替代扩展目标产生的量测, 对扩展目标形状采用椭圆逼近建模, 实现扩展目标形状与状态的估计.仿真实验表明本文所给的方法能够有效跟踪多扩展目标, 并且在目标个数估计方面优于CBMeMBer算法.此外, 与标签多伯努利滤波(LMB)计算比较表明: GLMB和LMB算法滤波估计精度接近, 二者精度高于CBMeMBer算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号