首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The porosity dependence of transverse and longitudinal sound wave velocities is studied in statistically isotropic porous ceramics. Based on the model relations for elastic moduli six model relations are constructed for the prediction of the porosity dependence of these velocities. All of them predict a decrease of sound wave velocities with increasing porosity, but the Maxwell / Mori-Tanaka / MMT model leads to unrealistic predictions for high porosity. A velocity ratio function is defined which contains the porosity dependence of the effective Poisson ratio and enables the prediction of longitudinal wave velocities. A comparison with literature data shows that most data lie below the exponential prediction and above the numerical prediction for concave pores. The correlation of the normalized longitudinal wave velocities and relative transverse wave velocities shows that essentially all values are above the highest lower bound and are reasonably predicted by the differential, exponential and self-consistent models.  相似文献   

2.
Acoustic absorbers that can have applications in a desired frequency band are a challenge often encountered in underwater acoustic absorber panel design. Polyurethane-based sound absorbing composite panels were designed with the help of finite element method (FEM) modeling using COMSOL for material formulations that can give optimum performance of echo reduction (ER) with minimum thickness. Polyurethanes of different compositions were evaluated for their acoustic performance using FEM modeling and experimental validation of the modeling results was done. The frequency-dependent modulus and damping properties were generated using dynamic mechanical analyzer and time–temperature superposition were performed to generate the material properties in the high frequency range (up to 25 kHz), which are significant for underwater acoustic detection applications and these data were used as inputs for modeling studies. Acoustic properties of the samples were experimentally evaluated using a water-filled pulse tube in 2–15 kHz frequency range as well as in an acoustic tank test facility for bigger dimension panels. These are nonresonant type absorbers capable to overcome limitations arising from environmental factors such as high hydrostatic pressures and also they are effective over a broad range of frequency (500 Hz–15 kHz) with ER > 15 dB. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47165.  相似文献   

3.
The possible use of ultrasound measurements for monitoring setting and hardening of mortar containing different accelerating admixtures for shotcrete was investigated. The sensitivity to accelerator type (alkaline aluminate or alkali-free) and dosage, and accelerator-cement compatibility were evaluated. Furthermore, a new automatic onset picking algorithm for ultrasound signals was tested. A stepwise increase of the accelerator dosage resulted in increasing values for the ultrasound pulse velocity at early ages. In the accelerated mortar no dormant period could be noticed before the pulse velocity started to increase sharply, indicating a quick change in solid phase connectivity. The alkaline accelerator had a larger effect than the alkali-free accelerator, especially at ages below 90 min. The effect of the alkali-free accelerator was at very early age more pronounced on mortar containing CEM I in comparison with CEM II, while the alkaline accelerator had a larger influence on mortar containing CEM II. The increase of ultrasound energy could be related to the setting phenomenon and the maximum energy was reached when the end of workability was approached. Only the alkaline accelerator caused a significant reduction in compressive strength and this for all the dosages tested.  相似文献   

4.
Despite the merits of periodic operation praised in the academic literature as one of the process intensification strategies advocated for trickle-bed reactors (TBRs), there is still reluctance to implement it in industrial practice. This can partly be ascribed to the lack of engineering data relevant to the elevated temperature and pressure characterizing industrial processes. Currently, the hydrodynamics of trickle beds under cyclic operation, especially in fast mode at elevated temperature and pressure, remains by and large terra incognita. This study proposes exploration of the hydrodynamic behavior of TBRs experiencing fast liquid flow modulation at elevated temperature and moderate pressure. The effect of temperature and pressure on the liquid holdup and pressure drop time series in terms of pulse breakthrough and decay times, pulse intensity and pulse velocity was examined for a wide range of superficial gas and liquid (base and pulse) velocities for the air-water system. The pulse breakthrough and decay times decreased, whereas the pulse velocity increased with temperature and/or pressure. The pressure drop was attenuated with increasing temperature for a given superficial gas, and base and pulse superficial liquid velocities. Experimental pulse velocity values were compared to the Giakoumakis et al. [2005. Induced pulsing in trickle beds—characteristics and attenuation of pulses. Chemical Engineering Science 60, 5183-5197] correlation which revealed that it could be relied upon at elevated temperature and close to atmospheric pressure.  相似文献   

5.
Given the density value, elastic properties of a homogeneous and isotropic material can be determined provided that primary and shear wave (P- and S-wave) velocities are known. P-waves are easier to monitor and detect compared to the S-waves. In concrete, along with P-wave velocity, shear wave velocity measurement is important in determining the elastic properties. These elastic properties could be implemented in assessing the quality of in-situ concrete. After an extensive literature survey, this study focused on the applicability of Hilbert transformation of waveforms to determine shear wave velocity in concrete material. The experimental work consisted of a set of ultrasonic measurements on the surface of a reinforced concrete deck. The recorded waveforms were then analyzed to obtain the arrival times of P- and S-waves. Hilbert transformation of the waveforms proved to yield reliable and repeatable results.  相似文献   

6.
Piezoceramics are widely-used in high-power applications, whereby the material is driven in the vicinity of the resonance frequency with high electric fields. Evaluating material's performance at these conditions requires the consideration of inherent nonlinearity, anisotropy, and differences between individual vibration modes. In this work, the relation between electromechanical properties at large vibration velocity and the utilized vibration mode is investigated for a prototype hard piezoceramic. The nonlinear behavior is determined using a combined three-stage pulse drive method, which enables the analysis of resonant and antiresonant conditions and the calculation of electromechanical parameters. The deviations of coupling coefficients, compliances, and piezoelectric coefficients at high-power drive were found to be strongest for the transverse length vibration mode. Differences in the mechanical quality factors were observed only between the planar and transverse length modes, which were rationalized by the different strain distribution profiles and the contribution of different loss tensor components. In addition, the influence of the measurement configuration was investigated and a correction method is proposed. The differences between vibration modes are further confirmed by heat generation measurements under continuous drive, which revealed that the strongest heat generation appears in the radial mode, while transverse and longitudinal length modes show similar temperature increase. Piezoceramics are widely-used in high-power applications, whereby the material is driven in the vicinity of the resonance frequency with high electric fields. Evaluating material's performance at these conditions requires the consideration of inherent nonlinearity, anisotropy, and differences between individual vibration modes. In this work, the relation between electromechanical properties at large vibration velocity and the utilized vibration mode is investigated for a prototype hard piezoceramic. The nonlinear behavior is determined using a combined three-stage pulse drive method, which enables the analysis of resonant and antiresonant conditions and the calculation of electromechanical parameters. The deviations of coupling coefficients, compliances, and piezoelectric coefficients at high-power drive were found to be strongest for the transverse length vibration mode. Differences in the mechanical quality factors were observed only between the planar and transverse length modes, which were rationalized by the different strain distribution profiles and the contribution of different loss tensor components. In addition, the influence of the measurement configuration was investigated and a correction method is proposed. The differences between vibration modes are further confirmed by heat generation measurements under continuous drive, which revealed that the strongest heat generation appears in the radial mode, while transverse and longitudinal length modes show similar temperature increase.  相似文献   

7.
The effect of wall roughness on particle behavior in two-phase flows in a horizontal backward-facing step is studied using a phase-Doppler particle anemometer. The results show that the wall roughness widens the particle velocity probability density distribution, enhances the redistribution of particle velocity into different directions,reduces the particle longitudinal mean velocity and increases the longitudinal and transverse fluctuation velocities and Reynolds shear stress. The effect of roughness on particle motion in the recirculation zone is weaker than that in the fully developed flow region. The effect of roughness for small particles is restricted only in the near-wall region, while that for large particle diffuses to the whole flow field.  相似文献   

8.
The velocity and attenuation of longitudinal bulk waves in a solid epoxy foam were measured by an acoustic pulse technique in the frequency range of 0.667–4.0 Mc./sec. and in the temperature range from ambient to 150°C. The measurements are reported with the density of the solid epoxy and with aluminum impurity loading as parameters. Over the indicated temperature and frequency ranges, complete attenuation and velocity measurements are reported for one foam corresponding to a density of 0.325 g./cc. In the density range of 0.088–0.325 g./cc. for the unloaded foams, attenuation is reported at room temperature. It is observed that the longitudinal velocities for all the densities decrease with temperature by about 40% in a span of 100°C. and that an approximately linear relation exists with temperature. The velocities in the foams loaded with small percentages of aluminum and heat-treated at 250°C. exhibit temperature behavior which is dependent upon the combined effects of loading, density change, and epoxy properties. For the loaded foam with the highest density (1.068 g./cc.), velocity is reported to a temperature of about 250°C. The velocities of all the various density samples with the exception of the loaded foams exhibit inflections at a temperature of about 110°C. The attenuation–temperature measurements on the 0.325 g./cc. sample show similar behavior at this temperature except that the effect is much more pronounced than the velocity inflection, hence a better indication of the transition. The precision of the measurement is about 2% for the relative longitudinal velocities and about 20% for the attenuation.  相似文献   

9.
To calculate elastic constants, longitudinal and tranverse acoustic wave velocities were measured for silica xerogels as a function of relative humidity (rh). The silica xerogels studied are microporous with open porosity of 53 vol%. The longitudinal wave velocity exhibits a minimum at about 35% rh. The transverse wave velocity decreases to a constant value for 35% rh. Consequently, Young's modulus is a minimum at about 35% rh, whereas the shear modulus decreases to a constant value at 35% rh. The bulk modulus and Poisson's ratio exhibit minimum values at about 15% rh. Young's modulus decreases from 4.91 to 3.42 GPa at 35% rh and then increases to 3.60 GPa at 55% rh. Poisson's ratio decreases from 0.184 to 0.164 at 15% rh and then increases to 0.272 at 55% rh. Below 35% rh, silica xerogels adsorb a monolayer of hydroxyls, whereas above 35% rh silica xerogels show pore filling.  相似文献   

10.
The ultrasonic velocity technique was used for nondestructive quantification of creep damage during interrupted tensile creep tests at 1400°C in an advanced silicon nitride to investigate the possibilities of this technique for creep damage monitoring in ceramic components. The longitudinal and shear wave velocities, Poisson's ratio, and Young's, shear, and bulk moduli linearly decreased with strain. Precise density change measurements indicated a linear relationship with a coefficient of proportionality of 0.69 between the volume fraction of cavities and tensile strain. Cavitation was identified as the main creep mechanism in the studied silicon nitride and the reason for ultrasonic velocity and elastic moduli degradation. The measurement of just the longitudinal wave velocity changes was found to be sufficient for quantification of cavitation during creep. The capability of the ultrasonic velocity technique for simple, sensitive, and reliable nondestructive monitoring of creep damage during intermittent creep was demonstrated in silicon nitride.  相似文献   

11.
滴流床中气液流速较高时会产生脉冲流。脉冲特性可表示为:脉冲频率、脉冲速度、脉冲持液与脉冲间持液。这些参数可用气液流速、填料特性及气液物性来度量。在宏观物料衡算基础上推得脉冲速度的模型。脉冲持液就是反应器的动持液;脉冲持液与脉冲间持液之比近于1.5。发现脉冲频率完全受表观液速与临界液速的差值所控制。获得了三个关联式,涉及不同系统,也包含文献数据。  相似文献   

12.
This article presented the energy absorption behaviors and damage mechanisms of 3D braided composites under transverse impact and low‐velocity impact with frequency domain analysis method. The transverse impact tests were contracted by modified split Hopkinson pressure bar with the impact velocities of 13.6, 17.8, and 22.8 m/s. The low‐velocity impact tests were performed by Instron 9250 drop‐weight instrument with the impact velocities ranging from 1 to 6 m/s. The experimental results shown that the peak load, displacement to peak load, total energy absorption increased with the increase of impact velocity. The damage morphologies showed the failure mode of 3D braided composite. Increased with the impact velocity, the failure mode changed from resin crack to fiber breakage. The frequency domain analysis results showed that the amplitude of stress wave increased with the increase of impact velocity, but its corresponding frequency was irrelevant to impact velocity. The different amplitude regions corresponded to different failure mode. POLYM. COMPOS., 37:1620–1627, 2016. © 2014 Society of Plastics Engineers  相似文献   

13.
The elastic moduli of yttria (Y2O3) samples that were made from powders with various particle morphologies were studied by means of ultrasonic measurements. The soundwave velocities in the longitudinal and transverse modes were measured. The elastic moduli were calculated from the sound velocities and density. For the high-purity, high-density (>5000 kg/m3) Y2O3 that was prepared in the present study, the average density and elastic moduli (and their standard deviations) were as follows: density (ρ) of 5020 ± 18 kg/m3, Young's modulus ( E ) of 179.8 ± 4.8 GPa, shear modulus ( G ) of 69.2 ± 2.0 GPa, bulk modulus ( B ) of 148.9 ± 3.0 GPa, and Poisson's ratio (ν) of 0.299 ± 0.004. The average longitudinal and transverse soundwave velocities ( V l and V t, respectively) were 6931 ± 65 and 3712 ± 49 m/s, respectively. The elastic moduli of lanthana-strengthened yttria (LSY) were ∼6% lower than those of high-purity Y2O3, and the nu value for LSY was ∼0.304. It has been argued that soundwave velocity is better than density, in regard to predicting the elastic moduli of fully dense and slightly porous materials. A linear equation that describes the change of the elastic moduli with soundwave velocity alone has been suggested. This equation was applicable to a relative elastic moduli range of 0.75–1.02.  相似文献   

14.
填料塔液泛的声发射测量   总被引:1,自引:1,他引:0       下载免费PDF全文
利用声发射技术采集填料塔在不同操作状态下壁面处的声发射信号,结合标准差分析、频谱分析和小波分析研究填料塔在不同操作状态时的声发射信号特征,提出填料塔液泛气速的声发射测量判据。以空气-水体系为例考察不同液体流量下的液泛气速,发现声发射信号标准差对液泛气速的预测值与压降法的预测值接近。比较不同操作条件下的声发射信号的功率谱,发现填料塔发生液泛时功率密度最大的峰从50 kHz 和60 kHz 转移到在25 kHz附近;进一步将声发射信号在0~300 kHz 频率范围内做7 尺度小波分解,当气速到达液泛气速时特征信号频段G1(d4、d5)的声发射信号能量分率迅速增大。G1尺度声发射信号能量分率对液泛气速的预测值与压降法的预测值接近。声发射技术作为一种非侵入式的检测手段,能够实现液泛的实时监控,具有良好的应用前景。  相似文献   

15.
The wavelet transform is an effective tool for studying the dynamic behavior of fluidized beds in the resolution of time variables. To understand the behavior of photocatalyst under different velocity in an annular type fluidized bed, a new analysis technique (Continuous Wavelet Transform: CWT) is applied. With the time-frequency localization characteristics embedded in wavelets, the time and frequency information of signals can be presented as a visualized scheme. By analysis of various methods for pressure fluctuation signals measured from an annular type fluidized bed, it was found that the dynamic behavior of fluidization in the annulus fluidized bed reactor was easily observed with the aid of wavelet transform.  相似文献   

16.
Abstract

The ultrasonic velocities of both longitudinal and shear waves were measured in thermoplastic discs of poly methyl methacrylate (PMMA) as a function of annealing temperatures ranging from 23°C to 95°C (23°C, 45°C, 60°C, 75°C, 80°C, and 95°C). Ultrasonic velocity measurements were taken at 2 MHz ultrasonic frequency using the pulse echo method. From the experimental data, the longitudinal modulus, rigidity, and Young's modulus are derived. Effect of annealing on microhardness of PMMA was studied using ultrasonic pulse echo method as well as mechanical measurements. The critical stress intensity factor was also determined at the same annealing conditions. In all events, the microhardness and the elastic constant are found to be changed at annealed temperature named 80°C.  相似文献   

17.
A pulse echo technique was used to measure the ultrasonic velocity of nine vegetable oils (5–70 C, 1.25 MHz) and a number of liquid triglycerides and triglyceride/sunflower oil mixtures (70 C, 1.25 MHz). The velocities of the vegetable oils at 70 C were related to the velocities of their constituent components using two empirical equations; the first related the velocity of a triglyceride to its molecular formula, and the second related the velocity of an oil to the velocities of its triglyceride components.  相似文献   

18.
The aim of this paper is to point out the water driving effect on the alkali silica reaction (ASR) expansion and particularly when modifications of moisture conditions occur. After being submitted to a unidirectional moisture gradient during 14 months, the upper faces of ASR reactive beams were covered by water for 9 months. This late water supply on the upper face rapidly produced large expansions, which mainly occurred along the transverse and the vertical directions resulting in large longitudinal cracks. Companion nonreactive specimens were kept in the same environmental conditions in order to quantify the basic characteristics of moisture-dependent expansive behaviour of the material. The paper focuses on the effects of late water supply or late drying on already ASR-damaged concrete, which is a significant concern for real-life structures. Both structural effects of late water supply on ASR progress in already damaged structures and interpretation of such phenomena are described.  相似文献   

19.
Photoelastic photographs, with exposures of approximately one-millionth of a second, were taken of transient stresses in glass before, during, and after fracture. The longitudinal and transverse waves in glass have been photographed and their velocities measured (18,000 and 11,000 ft. per sec, respectively). It was also found that under special conditions cracks may travel slower than .5000 ft. per sec, the value previously given as the crack propagation velocity.  相似文献   

20.
Elastic properties of Rb2Zncl4 were investigated by measuring the velocity and attenuation of both, transversal and longitudinal ultrasonic waves propagating along the crystallographic axes. At the lock-in phase transition temperature only v44 shows a remarkable anomaly. This anomaly has been found to be asymmetric with respect to the interchange of oscillation and propagation direction of the transverse ultrasonic wave. The anomaly of v44 at Tc is proportional to the contents of commensurate regions in the IC structure. From the temperature dependence of ultrasonic velocities at the phase transition from paraelectric to IC phase the critical behaviour of the order parameter should correspond rather to the (n = 2)-Heisenberg-model than to the Ising model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号