首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single‐walled carbon nanotube (SWCNT) polyvinylimidazole (PVI) composites have been prepared by in situ emulsion polymerization. Dispersion of raw SWCNTs in the PVI matrix was improved by surface modification of the SWCNTs using nitric acid treatment and air oxidation. The carbonyl‐terminated SWCNTs were covalently bonded to PVI by in situ polymerization and the SWCNT/PVI composite was thus obtained. The morphological and structural characterizations of the surface‐functionalized SWCNTs and SWCNT/PVI composites were carried out by Fourier transform infrared spectroscopy, X‐ray diffraction, conductivity measurements, scanning, and transmission electron microscopy. Thermograms of the materials were determined by the differential scanning calorimetry technique. The characterization results indicate that PVI was covalently bonded to SWCNTs and a new material was then obtained. The functionalized SWCNTs showed homogenous dispersion in the composites, whereas purified SWCNT resulted in poor dispersion and nanotube agglomeration. SWCNT/PVI composites exhibited chemical stability enhancement in many common solvents. I–V curves of the samples exhibit an ohmic character. Conductivity values for pure SWCNTs, pure PVI and SWCNT/PVI composite were measured to be 3.47, 2.11 × 10−9, and 2.3 × 10−3 S/m, respectively. Because of resonance, a large dielectric constant is obtained for SWCNT/PVI composite, which is not observed for ordinary materials. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
On the basis of combined study of the transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and ultraviolet–visible–near infrared absorption spectroscopy, the properties of the single-walled carbon nanotubes (SWCNTs), synthesized by aerosol (floating catalyst) chemical vapor deposition method by ferrocene vapor decomposition in the presence of carbon monoxide, are studied in details. The results show that increasing the temperature gives rise to the formation of high quality and large diameter SWCNTs. By monitoring the water-cooled probe position, both the bundle length and the diameter of the SWCNTs are effectively tuned due to the variation of the residence time and temperature profile in the reactor. An introduction of a small amount of CO2 suppresses the growth of small diameter nanotubes and enlarges the mean diameter of SWCNT samples. The mean diameter of SWCNTs could be easily altered in a broad range from 1.1 to 1.9 nm during growth, which is essential for the SWCNT applications in optical and electronic devices.  相似文献   

3.
Arc discharge single-walled carbon nanotubes (SWCNTs) were modified through different oxidative treatments and functionalization reactions. The modified SWCNT powders were dispersed in four different aqueous media and purified by ultracentrifugation. Extinction coefficients of the modified SWCNTs depended on the SWCNT type but did not depend on the dispersion medium. According to visible/near infrared spectroscopy, the purity of all the modified SWCNT dispersions substantially improved after ultracentrifugation; however, the spectrum profile, the degree of purity and the centrifugation yield were influenced by the SWCNT type, the surface functional groups and the dispersion medium. Semi-quantitative purity indexes calculated from optical absorption spectra were supported by transmission electron microscopy observations. Contents in metal impurities were analyzed by energy dispersive X-ray spectroscopy. SWCNT samples processed by oxidative acid treatments and ultracentrifugation showed metal contents of lower than 0.5 wt%.  相似文献   

4.
An amphiphilic diblock copolymer (PEtOz-PCL) based on hydrophilic poly(2-ethyl-2-oxazoline) (PEtOz) and hydrophobic poly(ε-caprolactone) (PCL) was adsorbed in aqueous phase on the surface of single-wall carbon nanotube to produce PEtOz-PCL-encapsulated SWCNTs (PEtOz-PCL/SWCNT) with the diameter about 30 nm. The Raman spectroscopy analysis indicated that the nanotubes were physically encapsulated by the block copolymer without chemical denaturation of the nanotube. PEtOz-PCL/SWCNTs exhibited pH-responsive reversible complexation with poly(acrylic acid) or poly(methacrylic acid) in aqueous phase due to the pH-dependent hydrogen bonding between the PEtOz outer shell of PEtOz-PCL/SWCNTs with carboxyl groups. In addition, by using PEtOz as a template for the formation of metal nanoparticles, Au and Pd nanoparticles were successfully hybridized with PEtOz-PCL/SWCNTs.  相似文献   

5.
The selective synthesis of SWCNTs with narrow chirality and diameter distribution by methane decomposition over a Co–MgO catalyst is reported. Raman spectroscopy, temperature programmed oxidation (TPO), UV–Vis–NIR absorption spectroscopy, and nitrogen physisorption were used to probe SWCNTs morphology, reaction selectivity, SWCNTs chirality and diameter distribution, and carbon yield. The catalyst was examined by nitrogen physisorption, X-ray diffraction (XRD), temperature programmed reduction (TPR), and UV–Vis-diffuse reflectance spectroscopy to elucidate the structure and chemical state of the species responsible for SWCNT growth. The results established a clear link between the degree of dispersion of Co species inside the MgO lattice and the catalyst activity and selectivity for SWCNT growth. High dispersion and stabilization of Co species influenced catalytic activity for methane decomposition and the high SWCNT selectivity. The yield of carbon and SWCNT selectivity increased with an increase in temperature, however, SWCNTs diameter distribution shifts to larger diameter tubes as synthesis temperature was increased.  相似文献   

6.
The electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)(5)(Lysine)(2), where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.e. p-amino-phenylalanine or p-cyano-phenylalanine). Circular dichroism spectra showed that the surfactant peptides primarily have random coil structures in an aqueous medium, both alone and in the presence of SWCNTs, simplifying analysis of the peptide/SWCNT interaction. The ability of the surfactant peptides to disperse individual SWCNTs in solution was verified using atomic force microscopy and ultraviolet-visible-near-infrared spectroscopy. The electronic properties of the surfactant peptide/SWCNT composites were examined using the observed nanotube Raman tangential band shifts and the observed additional features near the Fermi level in the scanning tunneling spectroscopy dI/dV spectra. The results revealed that SWCNTs functionalized with surfactant peptides containing electron-donor or electron-acceptor functional groups showed n-doped or p-doped altered electronic properties, respectively. This work unveils a facile and versatile approach to modify the intrinsic electronic properties of SWCNTs using a simple peptide structure, which is easily adaptable to obtain peptide/SWCNT composites for the design of tunable nanoscale electronic devices.  相似文献   

7.
The electrical and textural properties of single-walled carbon nanotube buckypapers were tunned through chemical functionalization processes. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized with three different chemical groups: Carboxylic acids (-COOH), benzylamine (-Ph-CH2-NH2), and perfluorooctylaniline (-Ph-(CF2)7-CF3). Functionalized SWCNTs were dispersed in water or dimethylformamide (DMF) by sonication treatments without the addition of surfactants or polymers. Carbon nanotube sheets (buckypapers) were prepared by vacuum filtration of the functionalized SWCNT dispersions. The electrical conductivity, textural properties, and processability of the functionalized buckypapers were studied in terms of SWCNT purity, functionalization, and assembling conditions. Carboxylated buckypapers demonstrated very low specific surface areas (< 1 m2/g) and roughness factor (Ra = 14 nm), while aminated and fluorinated buckypapers exhibited roughness factors of around 70 nm and specific surface areas of 160-180 m2/g. Electrical conductivity for carboxylated buckypapers was higher than for as-grown SWCNTs, but for aminated and fluorinated SWCNTs it was lower than for as-grown SWCNTs. This could be interpreted as a chemical inhibition of metallic SWCNTs due to the specificity of the diazonium salts reaction used to prepare the aminated and fluorinated SWCNTs. The utilization of high purity as-grown SWCNTs positively influenced the mechanical characteristics and the electrical conductivity of functionalized buckypapers.  相似文献   

8.
Supramolecular surface modification of single-walled carbon nanotubes (SWCNTs) using an amphiphilic molecule containing a bent triptycene moiety and a hydrophilic oligo(ethylene glycol) chain is described. The surface modification was realized through the binding of the triptycene moiety onto the sidewall of SWCNTs through a π–π stacking interaction, and the oligo(ethylene glycol) chains extend into the water and act as dispersing agents, thus yielding an aqueous SWCNT dispersion. This dispersion is stable for more than six months and contains a high concentration of SWCNTs. The dispersion was characterized by absorption, fluorescence, and Raman spectroscopy. Based on shape-fitting of SWCNTs and the triptycene moiety, the stacking of triptycene moieties on the SWCNT sidewall shows a nice selectivity for SWCNTs with a diameter of 1.0 nm.  相似文献   

9.
We report on the process latitude of an “all-laser” approach for the controlled growth of single-walled-carbon-nanotube (SWCNT) mats at predefined locations on silicon substrates. Unlike the conventional laser ablation methods where the SWCNTs are produced in the soot form, from the concomitant ablation of a graphite target loaded with metal catalyst, the “all-laser” process proceeds in two consecutive and independent steps. Indeed, the same KrF pulsed laser is first used to deposit at room temperature, the Co/Ni catalyst nanoparticles (NPs) onto the substrates – of which size and surface density can be controlled by adjusting the number of laser ablation pulses – and subsequently to grow SWCNTs onto the Co/Ni NPs sites, from the laser ablation of a pure graphite target. The grown SWCNT networks are shown to be fairly controllable by choosing the appropriate ratio of “graphite to Co/Ni-NPs” laser ablation pulses. The Co/Ni NPs and the grown SWCNTs were systematically characterized by atomic force microscopy, scanning/tunnelling electron microscopy, Raman spectroscopy and thermogravimetry analysis, and their potential as an active material in thin film transistor was evaluated. Obtained characterization data have led to identify key growth parameters of this novel approach, and to propose growth mechanism models that best describe our observations.  相似文献   

10.
The “in situ” preparation and characterization of composites of polyaniline (PANI) and single-walled carbon nanotubes (SWCNTs) are reported. To improve the dispersion and compatibility with the polymer matrix the raw SWCNTs were modified following different routes. SWCNTs oxidized by chemical or thermal treatments (nitric acid and air oxidation, respectively) were subjected to covalent functionalization with octadecylamine (ODA). SWCNT/PANI composites were prepared either from just oxidized SWCNTs, or from ODA functionalized SWCNTs. Temperature-programmed desorption, elemental analyses, ultraviolet-visible (UV-vis), UV-vis with near infrared and Raman spectroscopy, X-ray diffraction, scanning and transmission electron microscopy and conductivity measurements were used to characterize the functionalized SWCNT materials, dispersions and composites. The PANI composite prepared from air oxidized SWCNTs showed the best electrical conductivity indicating a better interaction with polyaniline than ODA functionalised SWCNTs. The improvement of conductivity is attributed to the doping effect or charge transfer of quinoide rings from PANI to SWCNTs.  相似文献   

11.
The selective synthesis of single-walled carbon nanotubes (SWCNTs) with narrow chirality and diameter distribution by methane decomposition over Fe–MgO catalyst is reported. The catalyst was examined by nitrogen physisorption, X-ray diffraction, temperature programmed reduction, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy to elucidate the structure and chemical state of the species responsible for SWCNT growth. High resolution electron microscopy, Raman and optical absorption spectroscopy, temperature programmed oxidation, energy dispersive X-ray spectroscopy and nitrogen physisorption were used to probe reaction selectivity, SWCNT chirality and diameter distribution, carbon yield and effectiveness of purification protocols. The yield of carbon increased with an increase in temperature, although SWCNTs selectivity decreased above the optimum synthesis temperature. Results established a clear link between the degree of dispersion of iron oxide species inside the MgO lattice and the catalyst selectivity for SWCNT growth.  相似文献   

12.
The electrocatalytic and biointerfacial properties of acid- and O2-plasma-treated single-walled carbon nanotube (SWCNT) electrodes were investigated. The SWCNT-modified electrodes were characterized using scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical performance of these electrodes was analyzed by cyclic voltammetry and chronoamperometry. Glucose oxidase was covalently immobilized on the surface of the treated SWCNTs, and the analytical characteristics of the integrated glucose sensor were investigated using glucose as a target analyte. The plasma-activated SWCNT electrode exhibited a much higher sensitivity to the glucose and a lower detection limit than the acid-treated electrode, indicating that a larger amount of enzyme was immobilized on the plasma-treated SWCNT electrode than on the acid-treated electrode. This is due to the fact that the oxygenated functional groups are mainly located at the ends of the tubes in the acid-treated SWCNTs, while the plasma-treated SWCNTs have an even larger surface area available for enzyme immobilization owing to the functional groups covering the entire surface of the SWCNTs.  相似文献   

13.
This work tries to study the problem of methanol crossover through the polymer electrolyte in direct methanol fuel cells (DMFCs) by developing new cathode electrocatalysts. For this purpose, a series of gas diffusion electrodes (GDEs) were prepared by using single-walled carbon nanotubes (SWCNTs) supported Pt–Pd (Pt–Pd/SWCNT) with different Pd contents at the fixed metal loading of 50 wt%, as bimetallic electrocatalysts, in the catalyst layer. Pt–Pd/SWCNT was prepared by depositing the Pt and Pd nanoparticles on a SWCNTs support. The elemental compositions of bimetallic catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES) system. The performances of the GDEs in the methanol oxidation reaction (MOR) and in the oxygen reduction reaction with/without the effect of methanol oxidation reaction were investigated by means of electrochemical techniques: cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The results indicated that GDEs with Pt–Pd/SWCNT possess excellent electrocatalytic properties for oxygen reduction reaction in the presence of methanol, which can originate from the presence of Pd atoms and from the composition effect.  相似文献   

14.
This study evaluates the effect of anionic and cationic surfactants on the dispersion of purified SWCNTs in water in terms of dispersibility and on electrical conductivity of TCFs and electronic band structures of SWCNTs. The dispersibility of surfactants in an aqueous SWCNT suspension is assessed with the amount of SWCNTs dispersed, the content of surfactants required to suspend SWCNTs, and the long-term stability of dispersion. Sodium dodecylbenzene sulfonate (SDBS) shows better dispersibility and electrical conductivity of SWCNTs than sodium dodecyl sulfate, sodium cholate, and cetyltrimethyl ammonium bromide. Electronic band structures of SWCNTs vary with surfactants and nitric acid treatment, investigated by using UV–Vis–NIR and Raman spectroscopy. Metallic and semiconducting SWCNTs and surfactants make electrostatic charge interactions between them, which occur in different manners according to the electronic types of tubes and the natures of surfactants. TCFs are fabricated by using the SWCNT suspension dispersed with SDBS, which reveal a low percolation threshold with the two dimensional percolation behavior. The highest ratio of dc to optical conductivity (σdc/σop) is observed to be ∼23.1, corresponding to sheet resistance of 69 Ω/sq at the 550-nm optical transmission of 80%, upon nitric acid treatment of the SWCNT films.  相似文献   

15.
We studied effects of metal catalyst and gas composition on the chemical vapor deposition (CVD) growth of horizontally aligned single-walled carbon nanotubes (SWCNTs) on r-plane sapphire substrates. The SWCNTs are sitting on the substrate and aligned along [10] direction of the sapphire surface. A combinatorial metal deposition method was applied for single and binary metal catalysts to systematically investigate the thickness and the composition dependence. The horizontally-aligned SWCNTs grown from stripe-patterned catalysts enable the direct comparison of the catalytic activity based on nanotube density. We found that the SWCNT density strongly depends on the metal catalyst in the order Fe > Co ? Ni ≈ Cu, while no nanotubes were grown over Mo. In addition, the methane concentration during CVD strongly influenced the nanotube density, and the optimal concentration varied depending on the metal species and its thickness. The study on the binary metal catalysts revealed that Fe–Co combination increases the SWCNT density (7–9 tubes/μm) about twice of the original metal film. The Co–Cu binary catalyst also showed the high density (8–10 tubes/μm) under a limited methane concentration. Different catalytic activity of each metal is discussed.  相似文献   

16.
In this study we prepared a new class of pyrene-functionalized benzoxazines (Py-BZ) through reactions of phenol, paraformaldehyde, and pyren-1-amine (Py-NH2) in toluene and EtOH. We prepared Py-NH2 through catalytic reduction of 1-nitropyrene (Py-NO2), which we had synthesized through electrophilic aromatic substitution of pyrene, using HNO3 as the nitration agent. 1H and 13C nuclear magnetic resonance spectroscopy and Fourier transform infrared (FTIR) spectroscopy confirmed the chemical structure of this new monomer; differential scanning calorimetry (DSC) and FTIR spectroscopy revealed the curing behavior of the Py-BZ polymers. The presence of the pyrene-functionalized benzoxazine enhanced the solubility of single-walled carbon nanotubes (SWCNTs) in THF, leading to the formation of highly dispersible Py-BZ/SWCNT organic/inorganic hybrid complex materials. Fluorescence emission spectroscopy revealed significant π–π stacking interactions between the Py-BZ and the SWCNTs in these complexes. In addition, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis revealed that incorporating the SWCNTs into the Py-BZ matrix significantly enhanced the thermal stability of the polymer after thermal curing.  相似文献   

17.
The effects of oxidative treatment of single-walled carbon nanotubes (SWCNTs) on the adhesion and proliferation of human osteoblasts (SAOS-2) were investigated. The surface properties of SWCNTs after oxygen plasma treatment were characterized by contact angle measurement, scanning electron microscopy and Raman spectroscopy. The immunofluorescent staining of vinculin, actin filaments and nuclei was used to probe cell adhesion and growth on SWCNT films. Our results show that adhesion and proliferation of human osteoblasts cultivated on SWCNT films indeed depends on the degree of an oxidative treatment. As an optimal procedure was found the treatment with oxygen plasma for 5 min. In the latter case the osteoblasts form a confluent layer with pronounced focal adhesions throughout the entire cell body. The optimal conditions compromise the effect of hydrophilic character of SWCNT films and the level of damage of SWCNT surface.  相似文献   

18.
The oxygen reduction reaction has been investigated on acid-treated single-walled (SWCNT) and multi-walled carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes in acid media using the rotating disk electrode (RDE) method. Different acids were used for the carbon nanotube (CNT) purification. A systematic study was carried out to elucidate whether the metal catalyst impurities of CNTs play a role in the electroreduction of oxygen on the CNT modified GC electrodes. The surface morphology of the carbon nanotube samples was examined by transmission electron microscopy and the concentration of metal catalysts in the CNT materials was determined by energy dispersive X-ray spectroscopy. The acid-treated MWCNTs were also characterised by Raman and X-ray photoelectron spectroscopies. Aqueous suspensions of SWCNTs and MWCNTs used for GC surface modification were prepared in the presence of Nafion. The RDE results indicated that the acid-treated CNT modified GC electrodes are less active catalysts for oxygen reduction than as-received CNTs which could be explained by the absence of metal catalysts on the surface of purified CNTs.  相似文献   

19.
Well-dispersed epoxy/single-walled carbon nanotube (epoxy/SWCNT) composites were prepared by oxidization and functionalization of the SWCNT surfaces using polyamidoamine generation-0 (PAMAM-0) dendrimer. For comparison purposes, neat epoxy, epoxy/PAMAM-0 and epoxy/pristine-SWCNTs were also prepared. The morphology and mechanical properties of the above composite systems were investigated and correlated with the surface characteristics of SWCNTs. It is found that surface functionalization can effectively improve the dispersion and adhesion of SWCNTs in epoxy. This leads to enhancement in mechanical properties of epoxy, but the improvement is not as significant as expected. It is also found that surface functionalization agent will have an undesirable effect on the physical and mechanical properties of epoxy/SWCNT composites. Issues regarding optimization of mechanical properties of epoxy/SWCNT composites are discussed.  相似文献   

20.
Due to their unusual electronic and vibrational properties, single walled carbon nanotubes (SWCNTs) with sub-nanometer diameters d ∼ 0.5–0.9 nm have recently gained interest in the carbon community. Using UV–Vis–NIR spectroscopy and ultra-centrifugation, we have conducted a detailed study of the π plasmon energy (present at∼5–7 eV) in sub-nm SWCNTs as a function of the size of the bundle. We find that the energy of the π plasmon peak E varies with the bundle diameter Dh as E = (-0.023 eV)ln(Dh/do) + 5.37 eV, where do = 0.5 nm and corresponds to the smallest tube diameter.1 This is compared with the same data for HiPCo and Carbolex SWCNTs of larger diameter (1–1.4 nm) confirming a clear dependence of E on the bundle size, which is present in addition to the previously reported dependence of E on SWCNT diameter d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号