首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of NOX in counterflow n-heptane/air triple flames was investigated by numerical simulation. Detailed chemistry and complex thermal and transport properties were employed. The results indicate that a triple flame produces more NO and NO2 than the corresponding premixed flames due to not only the appearance of the diffusion flame but also the interaction between different flame branches. The relative contributions of different routes to NO formation in the premixed flame branches change with the variation of the equivalence ratio, but the thermal mechanism always dominates in the diffusion flame branch. The interaction between flame branches is enhanced with the decrease of the distance between them. Both heat and radical exchange between flame branches contribute to the interaction. A new feature that does not exist in methane/air triple flame was observed in n-heptane/air triple flames, i.e. when the rich mixture equivalence ratio is higher, there are two peaks of CH concentration on the rich side of the diffusion flame branch, which leads to that some NO is formed beside the diffusion flame branch by the prompt route.  相似文献   

2.
A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with examples for three hydrocarbon components, n-heptane, iso-octane, and n-decane, relevant to surrogate fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination of the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal. Skeletal mechanisms for n-heptane and iso-octane generated using the DRGEP, DRGASA, and DRGEPSA methods are presented and compared to illustrate the improvement of DRGEPSA. From a detailed reaction mechanism for n-alkanes covering n-octane to n-hexadecane with 2115 species and 8157 reactions, two skeletal mechanisms for n-decane generated using DRGEPSA, one covering a comprehensive range of temperature, pressure, and equivalence ratio conditions for autoignition and the other limited to high temperatures, are presented and validated. The comprehensive skeletal mechanism consists of 202 species and 846 reactions and the high-temperature skeletal mechanism consists of 51 species and 256 reactions. Both mechanisms are further demonstrated to well reproduce the results of the detailed mechanism in perfectly-stirred reactor and laminar flame simulations over a wide range of conditions. The comprehensive and high-temperature n-decane skeletal mechanisms are included as supplementary material with this article.  相似文献   

3.
Various strategies have been proposed to tabulate complex chemistry for subsequent introduction into fluid mechanics computations. Some of them are grounded on laminar flame calculations, which are useful to seek out key relations linking a few control parameters with relevant species responses. The objective of this paper is to estimate whether approaches based on premixed flamelets (FPI or FGM) can be extended to partially premixed and diffusion flames. Prototypes of nonpremixed laminar and strained counterflow flames are simulated using fully detailed chemistry. The configuration studied is a jet of methane/air mixture opposed to an air stream. A set of reference flames is then obtained, to which FPI results are compared. By varying the equivalence ratio of the free stream of methane/air mixture, from stoichiometry up to pure methane, premixed, partially premixed, and diffusion flames are analyzed. When the fresh fuel/oxidizer mixture equivalence ratio takes values within the flammability limits, excellent results are obtained with FPI. When this equivalence ratio is outside the flammability limits, diffusive fluxes across isomixture fraction surfaces lead to a departure between the FPI tabulation and the reference detailed chemistry flames. This is associated mainly with the appearance of a double-flame structure, progressively evolving into a single diffusion flame when the fuel side equivalence ratio is further increased. Using an improved flame index to distinguish between premixed and diffusion flame burning, hybrid partially premixed combustion is reproduced from a combination of FPI and diffusion flamelets.  相似文献   

4.
The importance of graph search algorithm choice to the directed relation graph with error propagation (DRGEP) method is studied by comparing basic and modified depth-first search, basic and R-value-based breadth-first search (RBFS), and Dijkstra’s algorithm. By using each algorithm with DRGEP to produce skeletal mechanisms from a detailed mechanism for n-heptane with randomly-shuffled species order, it is demonstrated that only Dijkstra’s algorithm and RBFS produce results independent of species order. In addition, each algorithm is used with DRGEP to generate skeletal mechanisms for n-heptane covering a comprehensive range of autoignition conditions for pressure, temperature, and equivalence ratio. Dijkstra’s algorithm combined with a coefficient scaling approach is demonstrated to produce the most compact skeletal mechanism with a similar performance compared to larger skeletal mechanisms resulting from the other algorithms. The computational efficiency of each algorithm is also compared by applying the DRGEP method with each search algorithm on the large detailed mechanism for n-alkanes covering n-octane to n-hexadecane with 2115 species and 8157 reactions. Dijkstra’s algorithm implemented with a binary heap priority queue is demonstrated as the most efficient method, with a CPU cost two orders of magnitude less than the other search algorithms.  相似文献   

5.
NOx emissions in n-heptane/air partially premixed flames (PPFs) in a counter-flow configuration have been investigated. The flame is computed using a detailed mechanism that combines the Held’s mechanism for n-heptane and the Li and Williams’ mechanism for NOx. The combined mechanism contains 54 species and 327 reactions. Based on a detailed analysis, dominant mechanisms responsible for NOx formation and destruction in PPFs are found to be thermal, prompt, and reburn mechanisms. The dominant reactions associated with these mechanisms are also identified. The effects of strain rate (as) and equivalence ratio (φ) on NOx emissions are characterized for conditions in which the flame contains two spatially separated reaction zones; a rich premixed zone on the fuel side and a non-premixed zone on the air side. For most conditions, except for relatively high level of partial premixing, the NO formation rate in the non-premixed zone is significantly higher than that in the rich premixed zone. Within the rich premixed zone, the contribution of thermal NO to total NOx is higher than that of prompt NO, while in the non-premixed zone, the prompt NO is the major contributor. The behavior is related to the transport of acetylene from the rich premixed to the non-premixed zone, and higher concentrations of CH, O, and OH radicals in the latter zone. A notable result in this context is that the existence of CH does not automatically imply that prompt NO will form. The existence of O and OH is also necessary, in addition to CH, to form prompt NO. The relative contributions of thermal and prompt mechanisms to total NOx are generally insensitive to variations in as, but show strong sensitivity to variations in φ. There is a NOx destruction region sandwiched between the rich premixed and the non-premixed reaction zones. The NOx destruction occurs mainly through the reburn mechanism. The NOx emission index (EINOx) is computed as a function of φ and as. These results are qualitatively in accord with previous numerical and experimental results for methane-air PPFs.  相似文献   

6.
7.
The thermal and chemical effects of a one-dimensional, premixed flame quenching against a single surface are studied numerically. Fuels considered include n-heptane and molar-based mixtures of 95/5 and 70/30 percent n-heptane and hydrogen, respectively. A reduced gas-phase kinetic mechanism for n-heptane is employed. Wall boundary conditions investigated include both an adiabatic and an isothermal wall with temperatures ranging from 298 to 1200 K. The effects of equivalence ratio variations between 0.7 and 3 are investigated. The computations with n-heptane and n-heptane/hydrogen mixtures show that for wall temperatures greater than 400 K heat release rates have a higher value for the wall-interacting flame than for the freely propagating flame. It is also seen that the peak wall heat flux increases with increasing wall temperatures up to 1000 K. Chemical pathway analysis reveals the importance of radical recombination reactions at the surface to the heat release profiles of this study. The effect of H, O, and OH radical recombination near the inert wall is observed to lower the heat release spike on a 750 K isothermal boundary. The concentrations of intermediate hydrocarbons in the near-wall region are studied and related to unburned hydrocarbon formation in an engine cylinder. It is shown that a simple one-step global reaction rate expression for n-heptane fuel conversion cannot reproduce the flame-wall trends observed with the reduced n-heptane mechanism.  相似文献   

8.
Methane-air partially premixed flames subjected to grid-generated turbulence are stabilized in a two-slot burner with initial fuel concentration differences leading to stratification across the stoichiometric concentration. The fuel concentration gradient at the location corresponding to the flame base is measured using planar laser induced fluorescence (PLIF) of acetone in the non-reacting mixing field. Simultaneous PLIF of the OH radical and particle image velocimetry (PIV) measurements are performed to deduce the flow velocity and the flame front. These flames exhibit a convex premixed flame front and a trailing diffusion flame, with flow divergence upstream of the flame, as indicated by the instantaneous OH–PLIF, Mie scattering images, and PIV data. The mean streamwise velocity profile attains a global minimum just upstream of the flame front due to expansion of a gases caused by heat release. The flame speed measured just upstream of the flame leading edge is normalized with respect to the turbulent stoichiometric flame speed that takes into account variations in turbulent intensity and integral length scale. The turbulent edge flame speed exceeds the corresponding stoichiometric premixed flame speed and reaches a peak at a certain concentration gradient. The mean tangential strain at the flame leading edge locally peaks at the concentration gradient corresponding to the peak flame speed. The strain varies non-monotonically with the flame curvature unlike in a non-stratified curved premixed flame. The mechanism of peak flame speed is explained as the competition between availability of hot excess reactants from the premixed flame branches to the flame stretch induced due to flame curvature. The results suggest that the stabilization of lifted turbulent partially premixed flames occurs through an edge flame even at a relatively gentle concentration gradient. The strain is also evaluated along the flame front; it peaks at the flame leading edge and decreases gradually on either side of the leading edge. The present results also show qualitatively similar trends as those of laminar triple flames.  相似文献   

9.
The formation, growth, and transport of soot is investigated via large scale numerical simulation in a three-dimensional turbulent non-premixed n-heptane/air jet flame at a jet Reynolds number of 15,000. For the first time, a detailed chemical mechanism, which includes the soot precursor naphthalene and a high-order method of moments are employed in a three-dimensional simulation of a turbulent sooting flame. The results are used to discuss the interaction of turbulence, chemistry, and the formation of soot. Compared to temperature and other species controlled by oxidation chemistry, naphthalene is found to be affected more significantly by the scalar dissipation rate. While the mixture fraction and temperature fields show fairly smooth spatial and temporal variations, the sensitivity of naphthalene to turbulent mixing causes large inhomogeneities in the precursor fields, which in turn generate even stronger intermittency in the soot fields. A strong correlation is apparent between soot number density and the concentration of naphthalene. On the contrary, while soot mass fraction is usually large where naphthalene is present, pockets of fluid with large soot mass are also frequent in regions with very low naphthalene mass fraction values. From the analysis of Lagrangian statistics, it is shown that soot nucleates and grows mainly in a layer close to the flame and spreads on the rich side of the flame due to the fluctuating mixing field, resulting in more than half of the total soot mass being located at mixture fractions larger than 0.6. Only a small fraction of soot is transported towards the flame and is completely oxidized in the vicinity of the stoichiometric surface. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. Finally, given the difficulties in obtaining quantitative data in experiments of turbulent sooting flames, this simulation provides valuable data to guide the development of models for Large Eddy Simulation and Reynolds Average Navier Stokes approaches.  相似文献   

10.
Computational flame diagnostics (CFLDs) are systematic tools to extract important information from simulated flames, particularly when detailed chemical kinetic mechanisms are involved. The results of CFLD can be employed for various purposes, e.g. to simplify detailed chemical kinetics for more efficient flame simulations, and to explain flame behaviors associated with complex chemical kinetics. In the present study, the utility of a recently developed method of chemical explosive mode analysis (CEMA) for CFLD will be demonstrated with a variety of flames for n-heptane including auto-ignition, ignition and extinction in steady state perfectly stirred reactors (PSRs) and laminar premixed flames. CEMA was further utilized for analyses and visualization of a direct numerical simulation (DNS) dataset for a 2-D n-heptane–air flame under homogeneous charge compression ignition (HCCI) conditions. CEMA was found to be a versatile method for systematic detection of many critical flame features including ignition, extinction, premixed flame fronts, and flame stabilization mechanisms. The effects of cool flame chemistry for n-heptane on ignition, extinction and flame stability were also investigated with CEMA.  相似文献   

11.
A better knowledge of the combustion chemistry in very lean flames is required to improve flame stability and control the presence of oxygenated species as final products. In this work, the chemical structure of lean premixed propane-oxygen-nitrogen flames stabilized on a flat flame burner at atmospheric pressure was determined experimentally. The species mole fraction profiles were also computed by the Premix code (Chemkin II version) and three recently proposed mechanisms. Globally, the agreement between measured and computed mole fractions profiles is similar, despite large differences in the number of reactions in each mechanism. Pathways analyses show that only weak variations are observed in the relative importance of the main oxidation routes when the equivalence ratio is decreased from 0.9 to 0.5.  相似文献   

12.
This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively according to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NOx emissions show strong sensitivity to the fuel delivery advance angle between 20 °CA BTDC and 25 °CA BTDC.  相似文献   

13.
Laminar flame speeds of iso-cetane/air and decalin/air mixtures were measured in the counterflow configuration at atmospheric pressure and an elevated unburned mixture temperature of 443 K. Axial flow velocities were measured along the stagnation streamline using the digital particle image velocimetry. The laminar flame speeds were determined by determining the variation of a reference flame speed as a function of strain rate and computationally assisted non-linear extrapolations. The data are the first to be reported in the literature, and they were modeled using a recently developed kinetic model that includes 187 species and 6086 elementary reactions. In general, the computed results were found to be in close agreement with the data. In order to get insight into kinetic effects on flame propagation, detailed sensitivity and reaction path analyses were performed using the computed flame structures. The results revealed that at the same equivalence ratio, laminar flame speeds of iso-cetane/air mixtures are lower than those of n-hexadecane/air mixtures. Additionally, it was found that the laminar flame speeds of iso-cetane/air and decalin/air mixtures are sensitive largely to C0–C4 kinetic subset, and that the lower reactivity of iso-cetane compared to n-hexadecane could be attributed to the higher production of relatively stable intermediates.  相似文献   

14.
A hybrid finite-volume (FV)/transported probability density function (PDF) method is used for the simulation of a partially premixed flame with detailed chemistry. The FV code is implemented to handle detailed chemistry implicitly with no subgrid closure. A partially premixed methane-air flame is simulated to illustrate the need for closure. The PDF scheme is then substituted to handle the species transport using a subgrid mixing model. The algorithmic modifications to the PDF code are discussed in the context of a generalized structured grid solution technique. A multi-step particle transport algorithm is used to eliminate grid dependence of the time step. A detailed chemistry mechanism (GRI-2.11) is handled using in situ adaptive tabulation. It is shown that with simple modifications, the Interaction by Exchange with the Mean mixing model is able to predict the flame quite accurately. Mean profiles and conditional means obtained using the 49-species GRI-2.11 and 53-species GRI-3.0 mechanisms and the 16-species Augmented Reduced Mechanism are compared with the experimental data from the Sandia D flame. It is shown that with the mixing model, good agreement with the experimental data is achieved. Also the effect of the value of the mechanical-to-scalar time-scale ratio used in the mixing model is analyzed. The effect of the model constants in the dissipation equation for the turbulence model and the effect of radiation on flame predictions are also discussed.  相似文献   

15.
Conventional petroleum jet and diesel fuels, as well as alternative Fischer–Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed and reduced chemical kinetic mechanism for singly methylated iso-alkanes (i.e., 2-methylalkanes) ranging from C7 to C20. The mechanism also includes an updated version of our previously published C8–C16n-alkanes model. The complete detailed mechanism contains approximately 7200 species 31400 reactions. The proposed model is validated against new experimental data from a variety of fundamental combustion devices including premixed and non-premixed flames, perfectly stirred reactors and shock tubes. This new model is used to show how the presence of a methyl branch affects important combustion properties such as laminar flame propagation, ignition, and species formation.  相似文献   

16.
The flame brush characteristics and turbulent burning velocities of premixed turbulent methane/air flames stabilized on a Bunsen-type burner were studied. Particle image velocimetry and Rayleigh scattering techniques were used to measure the instantaneous velocity and temperature fields, respectively. Experiments were performed at various equivalence ratios and bulk flow velocities from 0.7 to 1.0, and 7.7 to 17.0 m/s, respectively. The total turbulence intensity and turbulent integral length scale were controlled by the perforated plate mounted at different positions upstream of the burner exit. The normalized characteristic flame height and centerline flame brush thickness decreased with increasing equivalence ratio, total turbulence intensity, and longitudinal integral length scale, whereas they increased with increasing bulk flow velocity. The normalized horizontal flame brush thickness increased with increasing axial distance from the burner exit and increasing equivalence ratio. The non-dimensional leading edge and half-burning surface turbulent burning velocities increased with increasing non-dimensional turbulence intensity, and they decreased with increasing non-dimensional bulk flow velocity when other turbulence statistics were kept constant. Results show that the non-dimensional leading edge and half-burning surface turbulent burning velocities increased with increasing non-dimensional longitudinal integral length scale. Two correlations to represent the leading edge and half-burning surface turbulent burning velocities were presented as a function of the equivalence ratio, non-dimensional turbulence intensity, non-dimensional bulk flow velocity, and non-dimensional longitudinal integral length scale. Results show that the half-burning surface turbulent burning velocity normalized by the bulk flow velocity decreased as the normalized characteristic flame height increased.  相似文献   

17.
An experimental and numerical investigation of counterflow prevaporized partially premixed n-heptane flames is reported. The major objective is to provide well-resolved experimental data regarding the detailed structure and emission characteristics of these flames, including profiles of C1-C6, and aromatic species (benzene and toluene) that play an important role in soot formation. n-Heptane is considered a surrogate for liquid hydrocarbon fuels used in many propulsion and power generation systems. A counterflow geometry is employed, since it provides a nearly one-dimensional flat flame that facilitates both detailed measurements and simulations using comprehensive chemistry and transport models. The measurements are compared with predictions using a detailed n-heptane oxidation mechanism that includes the chemistry of NOx and PAH formation. The reaction mechanism was synergistically improved using pathway analysis and measured benzene profiles and then used to characterize the effects of partial premixing and strain rate on the flame structure and the production of NOx and soot precursors. Measurements and predictions exhibit excellent agreement for temperature and major species profiles (N2, O2, n-C7H16, CO2, CO, H2), and reasonably good agreement for intermediate (CH4, C2H4, C2H2, C3Hx) and higher hydrocarbon species (C4H8, C4H6, C4H4, C4H2, C5H10, C6H12) and aromatic species (toluene and benzene). Both the measurements and predictions also indicate the existence of two partially premixed regimes; a double flame regime for ?<5.0, characterized by spatially separated rich premixed and nonpremixed reaction zones, and a merged flame regime for ?>5.0. The NOx and soot precursor emissions exhibit strong dependence on partial premixing and strain rate in the first regime and relatively weak dependence in the second regime. At higher levels of partial premixing, NOx emission is increased due to increased residence time and higher peak temperature. In contrast, the emissions of acetylene and PAH species are reduced by partial premixing because their peak locations move away from the stagnation plane, resulting in lower residence time, and the increased amount of oxygen in the system drives the reactions to the oxidation pathways. The effects of partial premixing and strain rate on the production of PAH species become progressively stronger as the number of aromatic rings increases.  相似文献   

18.
n-Butanol is a fuel that has been proposed as an alternative to conventional gasoline and diesel fuels. In order to better understand the combustion characteristics of n-butanol, this study presents new experimental data for n-butanol in three experimental configurations. Species concentration profiles are presented in jet stirred reactor (JSR) at atmospheric conditions and a range of equivalence ratios. The laminar flame speed obtained in an n-butanol premixed laminar flame is also provided. In addition, species concentration profiles for n-butanol and n-butane in an opposed-flow diffusion flame are presented. The oxidation of n-butanol in the aforementioned experimental configurations has been modeled using an improved detailed chemical kinetic mechanism (878 reactions involving 118 species) derived from a previously proposed scheme in the literature. The proposed mechanism shows good qualitative agreement with the various experimental data. Sensitivity analyses and reaction path analyses have been conducted to interpret the results from the JSR and opposed-flow diffusion flame. It is shown that the main reaction pathway in both configurations is via H-atom abstraction from the fuel followed by β-scission of the resulting fuel radicals. Several unimolecular decomposition reactions are important as well. This study gives a better understanding of n-butanol combustion and the product species distribution.  相似文献   

19.
A model of steady, quasi one-dimensional premixed laminar jet flame developing unopposed into a uniform flow has been formulated using a previously successful reduced chemical-kinetics model  and . A detailed derivation of the steady quasi one-dimensional conservation equations revealed that it is only under very restrictive conditions – probably very difficult to achieve experimentally and the validity of which is not reported in detail in experimental studies – that the quasi one-dimensional concept is meaningful. The governing equations have been mathematically manipulated to be consistent with the framework of the reduced chemical-kinetics model which relied on constituents representing the heavy species, and on quasi-steady light species and unsteady light species. The flame model includes accurate transport property calculation for high-pressure conditions and a real-gas equation of state. Based on a found self-similarity  and  which deteriorates at increasingly rich conditions, the chemistry model consists of tables of kinetic rates, quasi-steady species molar fractions and the heavy species mean molar mass extracted from the LLNL model in the framework of the reduced kinetics. The progress variables are only the mass fractions of the unsteady light species and the temperature. The values of the dependent variables are specified at the inflow location and null gradients are specified at the outflow. Simulations were performed for both n-heptane and iso-octane air oxidation over a wide range of pressures and equivalence ratios. The limited documentation of experimental conditions not specifying the inflow velocity (or flux) made it impossible to use this data for detailed comparison. In the one case where the inflow velocity was available for a burner experiment, those conditions were adopted for the simulation and the configuration was changed to a constant-area jet to approach the burner configuration. Results from this simulation compared favorably with the data, considering the different configurations. Results from parametric studies not associated with experimental data showed that at stoichiometric conditions the flame temperature, flame velocity and strain rate are not sensitive to the pressure, although flames become increasingly thinner with increasing pressure and the yield of the unsteady light species is different. Computations conducted at 40 bar for various equivalence ratios and for velocities differing with the equivalence ratio showed that the maximum flame velocity, flame strain and flame temperature were obtained at stoichometric conditions. Finally, we discuss the limitations of utilizing a priori obtained reduced chemical-kinetic models in flames calculations.  相似文献   

20.
The present study investigates freely propagating methane/hydrogen lean-premixed laminar flames at elevated pressures to understand the hydrogen addition effect of natural gas on the NO formation under the conditions of industrial gas turbine combustors. The detailed chemical kinetic model which was used in the previous study on the NO formation in high pressure methane/air premixed flames was adopted for the present study to analyze NO formation of methane/hydrogen premixed flames. The present mechanism shows good agreement with experimental data for methane/hydrogen mixtures, including ignition delay times, laminar burning velocities, and NO concentration in premixed flames. Hydrogen addition to methane/air mixtures with maintaining methane content leads to the increase of NO concentration in laminar premixed flames due to the higher flame temperature. Methane/hydrogen/argon/air premixed flames are simulated to avoid the flame temperature effect on NO formation over a pressure range of 1–20atm and equivalence ratio of 0.55. Kinetic analyses shows that the N2O mechanism is important on NO formation for lean flames between the reaction zone and postflame region, and thermal NO is dominant in the postflame zone. The hydrogen addition leads to the increase of NO formation from prompt NO and NNH mechanisms, while NO formation from thermal and N2O mechanisms are decreased. Additionally, the NO formation in the postflame zone has positive pressure dependencies for thermal NO with an exponent of 0.5. Sensitivity analysis results identify that the initiation reaction step for the thermal NO and the N2O mechanism related reactions are sensitive to NO formation near the reaction zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号