首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starch granule development and physicochemical properties of starches in waxy wheat and non-waxy wheat were investigated in this article. Starch granules in waxy wheat endosperm showed an early developmental process. Compared with non-waxy wheat starch granules (round-shaped), waxy wheat starch granules (ellipse-shaped) were larger and contained more B-type granules. According to the granule size, starch granules were divided into two groups in waxy wheat, but were divided into three groups in non-waxy wheat. Compared with non-waxy wheat starch, waxy wheat starch had higher swelling power, gelatinization temperatures (To, Tp, Tc), and relative degree of crystallinity. They showed similar ordered structures on external regions of starch granules. Additionally, waxy wheat starch had a higher proportion of double-helical components and a lower proportion of single-helical components than non-waxy wheat starch. Based on the previous results, it was concluded: (1) waxy wheat and non-waxy wheat not only differed in starch granule development, but also in physicochemical properties of starches; (2) waxy wheat had more potential value for producing traditional products than non-waxy wheat.  相似文献   

2.
Cationic starch ethers of normal and waxy corn, normal and waxy barley and normal pea starch were prepared by an aqueous alcoholic process for evaluation of their functional properties as compared to the native starch controls. The native starches exhibited a wide range in average granule size (10–21 μm diameter), amylose content (0–34%) and swelling power (13–31). Cationization to degrees of substitution (DS) of 0.030–0.035 with 3-chloro-2-hydroxypropyltrimethylammonium chloride resulted in marked increases in swelling power of all starches, with little corresponding increases in starch solubility. Cationization also decreased the onset of endothermic transitions and pasting temperatures quite substantially, and promoted the development of sharp peak viscosities in the amylographs of all normal and waxy starches, including that of pea starch. Final cold viscosities of the cationic starches exhibited positive setbacks, and the cooked starch gels, after storage for 7 days at 4°C and −15°C, showed no syneresis. All cationic starches except for waxy corn were more susceptible to α-amylase hydrolysis than native control starches. The general improvement in functional properties, especially in the waxy corn, waxy barley and pea starches, due to the aqueous alcoholic-alkaline cationization process would greatly enhance their industrial applications.  相似文献   

3.
The physicochemical properties of wx potato, wx corn, and wx rice starches were examined and compared. wx potato starch displayed the B‐type XRD pattern, whereas wx rice and wx corn displayed the A‐type. Shapes of wx potato starch were oval or slightly round, wx corn and wx rice starch granules were polygonal. AM contents of the three starches were between 1.0 and 1.5%. Rapid viscosity analyzer data showed initial pasting temperatures of wx potato, wx corn, and wx rice starches as 69.6, 75.4, and 76.8°C, respectively, peak viscosity, breakdown, and setback of wx potato starch were 2114, 1084, and 4 mPa s. Using DSC, onset temperature of gelatinization of wx potato starch was 5.5–7.2°C higher than those of wx rice and wx corn starches. The thermal enthalpies of the starches studied in our laboratory were in the range of 0.2268–1.9900 J/g with decreasing order of wx potato > wx corn > wx rice starch.  相似文献   

4.
H. Simonin  C. Guyon  M. Orlowska  A. Le-Bail 《LWT》2011,44(3):779-786
We investigated the influence of pH and osmolarity on the high-pressure-induced gelatinization of waxy corn and waxy rice starches in salt solutions, and the properties of the resulting gels. Gelatinization kinetics, the gel swelling power of starches, their structure and their rheological properties were studied for starch suspensions treated at 500 MPa. Gelatinization took place mostly in the first 15 min of the pressure treatment and both the gelatinization speed and the maximal level of gelatinized starch decreased with increasing osmolarity. pH had a minor influence on gelatinization kinetics differing from one starch to another. The resulting gels appeared as a mix of a gel and starch granules with a higher proportion of native granules with increasing osmolarity. Gel strength and swelling were positively correlated to their proportion of gelatinized starch. Thus, gels with different structures and gelatinization levels can be obtained under pressure depending on pH and osmolarity.  相似文献   

5.
Mixed starches with an amylose content of 5, 10, 18, 20, 23, and 25% were prepared by blending starches isolated from waxy and non‐waxy wheat at different ratios. The dynamic viscoelasticity of mixed 30% and 40% starch gels was measured using a rheometer with parallel plate geometry. The change in storage shear modulus (G′) over time at 5 °C was measured, and the rate constant of G′ development was estimated. As the proportion of waxy starch in the mixture increased, starch gels showed lower G′ and higher frequency dependence during 48 h storage at 5 °C. Since the amylopectin of waxy starch granules was solubilized more easily in hot water than that of non‐waxy starch granules, mixed starch containing more waxy starch was more highly solubilized and formed weaker gels. G′ of 30% and 40% starch gels increased steadily during 48 h. 30% starch gel of waxy, non‐waxy and mixed starches showed a slow increase in G′. For 40% starch gels, mixed starch containing more waxy starch showed rapidly developed G′ and had a higher rate constant of starch retrogradation. Waxy starch greatly influenced the rheological properties of mixed starch gels and its proportion in the mixture played a major role in starch gel properties.  相似文献   

6.
Starches from amaranth (Amaranthus cruentus) and quinoa (Chenopodium quinoa) were isolated and investigated by using enzymatic assay, Rapid Visco Analysis (RVA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and X-ray Diffractometry (XRD). Amylose content measured enzymatically was 7.8 and 11.2 % for amaranth and quinoa starch, respectively. Quinoa starch was much more viscous than amaranth starch and gelatinized at a lower temperature as determined with RVA. DSC demonstrated a wider gelatinization temperature range for amaranth starch (20.6°C) than for quinoa starch (11.1°C). SEM observation revealed polygonal shape of starch granules, and XRD suggested a typical Atype diffraction pattern for both the starches in question. A crystallinity of 45.5 % for amaranth and 35.4 % for quinoa starch, respectively, was also determined from the XRD collected data.  相似文献   

7.
The effect of white sauce ingredients and increased cooking time at 90 °C on the degree of gelatinization of corn, waxy corn, rice, potato and modified waxy corn starches was studied. The changes in pasting properties, linear viscoelastic properties, and microstructure were determined. In all the native starches in water, a longer cooking time at 90 °C caused greater starch granule swelling and more leaching of solubilized starch polymers into the intergranular space. These effects were more noticeable in the waxy corn and potato starches. The potato starch was the most affected, with complete disruption of the starch granules after 300 s at 90 °C. The microstructural changes which transformed a system characterized by starch granules dispersed in a continuous phase (amylose/amylopectin matrix) into a system with an increase in the continuous phase and a decrease in starch granules were associated with a decrease in system viscoelasticity. The elastic moduli were higher in the sauce than in the starch in water system. However, with the exception of potato starch, the white sauce showed lower viscoelasticity than the starch in water system. The white sauce ingredients decreased the effect of cooking time on the starch gelatinization process, particularly in potato starch.  相似文献   

8.
Water-binding capacity, swelling power and solubility, amylograph viscosity, relative, specific, reduced and intrinsic viscosities of starches isolated from yellow corn, sorghum (Giza 3 and 114), Sordan 79 and pearl millet were investigated. Yellow corn and pearl millet starches were characterized by their higher water binding capacities. Pearl millet starch showed higher initial transition temperatures (about 91°C) to be gelatinized than the other starch which gelatinized at initial transition temperature ranging from 66 to 70°C. Differences in maximum viscosities expressed as Brabender units were also ranging from 780 to 185 BU. On the other hand, slight differences in intrinsic viscosity were observed.  相似文献   

9.
The restriction of gelatinization of the legume starches, which were isolated from Phaseolus vulgaris species, was studied in terms of enzymatic digestion, light microscopic observation, measurements of X-ray diffraction, viscosity, swelling power and solubility, when the legume starch slurries were heated in step by step manner at a given rate from moderate temperature up to 90°C. Three legume starches tested showed a remarkable restriction of gelatinization, although these phenomena were not always observed in the legume starch slurry alone. Such restriction of gelatinization, however, was not observed in the waxy starch or starches which contain few amylose fractions. The formation of starch-lipid complex was ruled out as a cause because the defat treatment did not reduce the restricted gelatinization of legume starch and high amylose corn starch. From the data presented, it was suggested that physical modification of starch slurry containing amylose fraction induced the hysteretic, mutual alteration of the starch macromolecules.  相似文献   

10.
Starches from normal rice (21.72% amylose), waxy rice (1.64% amylose), normal corn (25.19% amylose), waxy corn (2.06% amylose), normal potato (28.97% amylose) and waxy potato (3.92% amylose) were heat-treated at 100 °C for 16 h at a moisture content of 25%. The effect of heat-moisture treatment (HMT) on morphology, structure, and physicochemical properties of those starches was investigated. The HMT did not change the size, shape, and surface characteristics of corn and potato starch granules, while surface change/partial gelatinization was found on the granules of rice starches. The X-ray diffraction pattern of normal and waxy potato starches was shifted from B- to C-type by HMT. The crystallinity of the starch samples, except waxy potato starch decreased on HMT. The viscosity profiles changed significantly with HMT. The treated starches, except the waxy potato starch, had higher pasting temperature and lower viscosity. The differences in viscosity values before and after HMT were more pronounced in normal starches than in waxy starches, whereas changes in the pasting temperature showed the reverse (waxy > normal). Shifts of the gelatinization temperature to higher values and gelatinization enthalpy to lower values as well as biphasic endotherms were found in treated starches. HMT increased enzyme digestibility of treated starches (except waxy corn starch); i.e., rapidly and slowly digestible starches increased, but resistant starch decreased. Although there was no absolute consistency on the data obtained from the three pairs of waxy and normal starches, in most cases the effects of HMT on normal starches were more pronounced than the corresponding waxy starches.  相似文献   

11.
The pasting viscosity, morphological properties, and swelling properties of potato starch and waxy maize starch mixtures at different ratios were investigated. Pasting analysis of the starch mixtures (7% solids in water, w/w) using a Rapid Visco Analyser showed linear changes in peak viscosity and pasting temperature according to the mixing ratios of both starches, but not in breakdown and setback. The pasting profile revealed that the starches rendered mutual effects during pasting, more significantly when the amounts of potato and waxy maize starches were similar. The volume fraction of swollen granules and the presence of amylose appeared to be important parameters in the mutual effects of both starched during pasting. Under a light microscope, the swelling of potato starch granules was delayed by the presence of waxy maize starch. Overall results indicate that new pasting properties can be generated by mixing starches of different botanical sources.  相似文献   

12.
Endosperm starch isolated from an amylose‐free waxy mutant hull‐less barley line, Shikoku Hadaka 97, had an amylose content of 0.3% and higher swelling power than ordinary waxy barley cultivars/lines with amylose contents of 2.2—6.5%. A highly significant correlation was observed between amylose content and swelling power among waxy barley starches. No clear differences were detected in the chain‐length distribution profiles or thermal properties between the amylose‐free starch and ordinary waxy starch. The chain‐length distribution profile of waxy barley starch was slightly different from that of normal barley starch. Gelatinization temperatures and gelatinization enthalpy of waxy barley starch were higher than those of normal barley starch. Significant correlations were observed between amylose content and thermal properties of starch samples analyzed. Waxy barley starch stained with a concentrated iodine‐potassium iodide solution showed a ghost‐like appearance.  相似文献   

13.
以大黄米、糯米、糯玉米淀粉为原料,通过快速黏度分析仪、流变仪、差示扫描量热仪以及低场强核磁研究不同添加量的(2%、6%和10%)麦芽糖对糯性谷物淀粉糊化和流变性质的影响。结果表明:麦芽糖能够提高3 种糯性谷物淀粉的成糊温度,显著降低3 种淀粉的峰值黏度、终值黏度和回生值;随着麦芽糖添加量的增加,3 种淀粉糊的剪切应力逐渐降低,稠度系数降低,体系仍为假塑性流体,相比于大黄米淀粉和糯米淀粉,10%的麦芽糖对糯玉米淀粉的影响更大,稠度系数由32.546 Pa·sn降至4.801 Pa·sn,剪切变稀现象更为明显;热力学研究显示添加麦芽糖均能增加3 种糯性谷物淀粉的糊化温度和糊化焓值,且随着麦芽糖添加量的增加而升高;通过低场强核磁分析可知,添加麦芽糖使整个体系结合水与不易流动水含量增加,自由水含量减少,进一步解释添加麦芽糖能够降低体系黏度,增加淀粉糊化温度;本研究可为麦芽糖在糯性谷物食品中的应用提供指导。  相似文献   

14.
Normal maize, waxy maize and amylomaize V starches were treated at a moisture content of 70% by ultrasonic treatment. The results showed that the surface of normal and waxy maize starches was porous after treatment and a fissure could be clearly observed in the surface of amylomaize V starch. Ultrasonic treatment did not change the X‐ray pattern of the three maize starches. The swelling power (amylomaize V (B‐type) > normal maize > waxy maize (A‐type)) and solubility (amylomaize V > normal maize > waxy maize), the syneresis of amylomaize V starch and the gelatinization transition temperatures of the three starches increased on this treatment. Ultrasonic treatment decreased the syneresis of normal and waxy maize starches, the enthalpy of gelatinization (amylomaize V > waxy maize ≈︂ normal maize) and the gelatinization temperature range (amylomaize V > normal maize ≈︂ waxy maize) of all starches. A drop in viscosity of all three starches was observed and the viscosity patterns of three starches remained unchanged after ultrasonic treatment. The data showed that ultrasonic treatment degraded preferentially the amorphous regions and more easily attacked linear amylose than highly branched amylopectin.  相似文献   

15.
Waxy wheats possess unique starch functional properties that may be useful in specific end‐uses. To assess the physicochemical, thermal, and pasting properties, starches from seven waxy genotypes originating from two wheat classes, tetraploid durum and hexaploid hard red spring (HRS), were evaluated and compared with their counterpart non‐waxy wild types. The amylose content ranged from 2.3% to 2.6% in waxy durum lines, compared to 29.2% in normal durum control, and 2.1% to 2.4% in waxy HRS, compared with 26.0% in normal HRS control. Significant differences in the degree of crystallinity were observed between the waxy and control starches, despite similar A‐type X‐ray patterns, although differences between the two wheat classes were non‐significant. Both, control and waxy starches displayed an X‐ray peak corresponding to the amylose‐lipid complex, but the intensity of the peak was markedly lower in the waxy starches. The waxy durum starches exhibited the highest transition temperatures as measured by Differential Scanning Calorimetry (DSC), whereas, the enthalpy of gelatinization of most waxy genotypes was statistically higher than that of the controls. All waxy starches displayed high peak viscosity, high breakdown, and low setback profile as measured by the Rapid Visco Analyser (RVA). Texture analysis of RVA gels revealed significant differences between waxy and non‐waxy wheats, as well as between waxy tetraploid and hexaploid wheats, confirming that the nature and class of wheat starch would play a significant role when using waxy wheat blends in different wheat‐based products.  相似文献   

16.
The goal of the research was to prepare maltodextrins (MD) from waxy wheat starch and waxy corn starch (control). Waxy wheat starches with 0.2% protein, 0.2% lipid and ∼1% amylose were isolated from two flours by mixing a dough, dispersing the dough in excess water, and separating the starch and gluten from the resultant dispersion. The mean recoveries were 72% for the starches and 76% for the gluten fraction with 80% protein. Maltodextrins having low‐dextrose equivalence (DE) 1—2 and mid‐DE 9—10 were prepared by treatment of 15% slurries of waxy wheat starch and waxy corn starch at 95 °C for 5—10 min and 20—50 min, respectively, with a heat‐stable α‐amylase. Denaturing the enzyme and spray‐drying produced MD's with bulk densities of 0.3 g/cm 3. The powdery MD's were subjected to an accelerated‐rancidity development test at 60 °C, and an off‐odor was detected after 2 days storage for the low‐DE MD's from the two waxy wheat starches (WxWS1‐MD 1.2 and WxWS2‐MD 1.5), but not for the low‐DE waxy corn maltodextrin (WxCS‐MD 2.2) or a commercial waxy corn MD with DE 1. None of the mid‐DE 9—10 MD's developed off‐odor after 30 days storage at 60 °C. The experimental products WxWS1‐MD 9.2, WxWS2‐MD 9.9 and WxCS‐MD 9.1 showed high water‐solubility and gave 1—10% aqueous solutions of high clarity with no clouding upon cooling.  相似文献   

17.
Contribution on Waxy Maize Starch and High Amylose Starch Modified under the Influence of Temperature. The starches of the two genetic varieties of the corn grain, waxy maize starch and high amylose starch, were subjected to the influence of different temperatures. Subsequently, the physico-chemical properties of the modified starches were examined. Waxy maize starch which mainly consists of amylopectin, and high amylose starch which contains a high portion of linear chains of polymerized glucose units are interesting test materials because of their properties which are different by nature. Waxy maize starch with its high viscosity values, great swelling power and good solubility in hot water shows no tendency to settle or retrograde. While the process of freezing the starch granules hardly changes the properties mentioned, the influence of a temperature of 100°C causes morphological changes of a small proportion of grains, including the loss of birefringence. These changes are particularly pronounced after treatment of native starch at 120°C. The properties of the starch pastes were also strongly changed. The native high amylose starch characterized by unusual, oblong starch granules without birefringence, a low viscosity, low swelling power and low solubility showed only minor changes after freezing, whereas a temperature of 100°C resulted in reduced values of solubility and aggregation of the starch granules. A temperature treatment at 120°C and at 125°C brought about changes in the swelling properties, the viscosity and limiting viscosity, settling, swelling power, and solubility of the starch pastes. Attempts were made to conform the changes in the different properties observed with the expected influence of temperature treatment on the intermolecular forces (hydrogen bonds, crossbonding).  相似文献   

18.
The starches separated from thirteen different black gram cultivars were investigated for physicochemical, thermal, morphological and pasting properties. Amylose content, swelling power, solubility and water binding capacity of starches ranged between 30.2–34.6%, 16.0–22.3 g/g, 14.8–17.3% and 73.5–84.5%, respectively. The diameter of starch granules, measured using a laser‐light scattering particle‐size analyzer, varied from 12.8 to 14.3 μm in all black gram starches. The shape of starch granules varied from oval to elliptical. The transition temperatures (To, Tp and Tc) and enthalpy of gelatinization (ΔHgel) determined using differential scanning calorimetry, ranged between 66.1–71.3, 71.0–76.2, 75.9–80.4°C and 6.7–9.4 J/g, respectively. Pasting properties of starches measured using the Rapid Visco Analyser (RVA) also differed significantly. Pasting temperature, peak viscosity, trough, breakdown, final viscosity and setback were between 75.8–80.3°C, 422–514, 180–311, 134–212, 400–439 and 102–151 Rapid Visco Units (RVU), respectively. Turbidity values of gelatinized starch pastes increased during refrigerated storage. The relationships between different properties were also determined using Pearson correlation coefficients. Amylose content showed a positive correlation with swelling power, turbidity and granule diameter. Swelling power showed a negative correlation with solubility and setback. To, Tp and Tc showed positive correlation with turbidity, pasting temperature and were negatively correlated to peak and breakdown viscosity.  相似文献   

19.
Selected starches, i.e. waxy maize, amaranth, quinoa, wheat, millet and buckwheat starches, were investigated with respect to their technological properties such as gelatinization, stability to mechanical stress, resistance to conditions and stability in continuous freeze/thaw cycles. Technological properties are correlated with molecular features such as branching characteristics in terms of iodine-complexing potential, molar mass, occupied glucan-coil volume, packing density of glucan coils and rheological properties. Waxy maize and amaranth starches were found to be amylopectin-type short-chain branched (scb) glucans with weight average molar masses Mw = 17 × 106 g/mol and 12 × 106 g/mol, respectively. Waxy maize starch had a high gelatinization potential, high viscosity at 95 °C (340 mPas) low stability at acidic conditions, average stability to shearing and good freeze/thaw stability. For amaranth starch a viscosity of 122 mPas at 95 °C, low resistance to acid, but high stability to applied shearing and even high freeze/thaw stability was determined. Investigated quinoa starch was classified as scb-type glucan, however, the branches are significantly longer than those of waxy maize and amaranth. With a Mw = 11 × 106 g/mol and a viscosity of 187 mPas at 95 °C, this sample is comparably resistant to acidic conditions and to shearing, but instable in freeze/thaw experiments. Wheat, millet and buckwheat starches contain significant percentages of amylose-type long-chain branched (lcb) glucans (22.1, 32.1 and 24.3 %, respectively) with Mw values of 5 × 106 g/mol, 12 × 106 g/mol and 15 × 106 g/mol, respectively. Wheat starch, with a viscosity of 107 mPas at 95 °C, shows low stability under acidic conditions, but high stability to shearing. Wheat and millet starches, but not buckwheat starch, form weak gels in the course of subsequent freeze/thaw cycles. Millet starch, with a viscosity of 101 mPas at 95 °C was found to be moderately stable under acidic conditions and to shearing. Buckwheat starch with a viscosity of 230 mPas at 95 °C shows no acid resistance and is instable upon shearing but performs very well in freeze/thaw experiments.  相似文献   

20.
Waxy and normal maize starches of various pH values and salt contents were prepared, irradiated with gamma rays (5–20 kGy) and their molecular structure, pasting viscosity and rheological properties determined. Average molar mass and size of both waxy and normal maize starches decreased considerably by irradiation from >338.0×106 to <39.4×106 g/mol and from >237.5 to <125.2 nm, respectively. Adjustments of pH had little influence on the average molar mass and size of irradiated starch, whereas incorporation of salt greatly reduced the molar mass and size of irradiated waxy and normal maize starches. As the pH increased from 4 to 8, the pasting viscosity of the irradiated starches decreased from 1032 to 279 mPa s in waxy and from 699 to 381 mPa s in normal starches. Pasting viscosity of both irradiated waxy and normal starch decreased from 689 to 358 mPa s and from 327 to 184 mPa s as the salt concentration increased from 1 to 5%. The G′ of gels, determined during cooling from 90 to 10°C or storage for 8 h, decreased in irradiated waxy and normal starches by pre‐conditioning at pH 8 and in irradiated waxy starches by pre‐conditioning at 5% NaCl. With 5% NaCl, G′ of irradiated normal maize starch during cooling increased up to the irradiation level of 10 kGy, and increased during storage for 8 h at all levels of irradiation. Incorporated salt prior to irradiation appears to induce incremental modifications in the molecular structure, rheological and retrogradation properties of starch by boosting the degradation of molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号